An End-to-End Natural Language Processing System for Automatically Extracting Radiation Therapy Events From Clinical Texts

医学 分数(化学) 命名实体识别 关系抽取 人工智能 自然语言处理 管道(软件) 事件(粒子物理) 信息抽取 计算机科学 程序设计语言 任务(项目管理) 管理 化学 有机化学 经济 物理 量子力学
作者
Danielle S. Bitterman,Eli Goldner,Sean Finan,David Harris,Eric B. Durbin,Harry Hochheiser,Jeremy L. Warner,Raymond H. Mak,Timothy M. Miller,Guergana Savova
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (1): 262-273 被引量:3
标识
DOI:10.1016/j.ijrobp.2023.03.055
摘要

Real-world evidence for radiation therapy (RT) is limited because it is often documented only in the clinical narrative. We developed a natural language processing system for automated extraction of detailed RT events from text to support clinical phenotyping.A multi-institutional data set of 96 clinician notes, 129 North American Association of Central Cancer Registries cancer abstracts, and 270 RT prescriptions from HemOnc.org was used and divided into train, development, and test sets. Documents were annotated for RT events and associated properties: dose, fraction frequency, fraction number, date, treatment site, and boost. Named entity recognition models for properties were developed by fine-tuning BioClinicalBERT and RoBERTa transformer models. A multiclass RoBERTa-based relation extraction model was developed to link each dose mention with each property in the same event. Models were combined with symbolic rules to create a hybrid end-to-end pipeline for comprehensive RT event extraction.Named entity recognition models were evaluated on the held-out test set with F1 results of 0.96, 0.88, 0.94, 0.88, 0.67, and 0.94 for dose, fraction frequency, fraction number, date, treatment site, and boost, respectively. The relation model achieved an average F1 of 0.86 when the input was gold-labeled entities. The end-to-end system F1 result was 0.81. The end-to-end system performed best on North American Association of Central Cancer Registries abstracts (average F1 0.90), which are mostly copy-paste content from clinician notes.We developed methods and a hybrid end-to-end system for RT event extraction, which is the first natural language processing system for this task. This system provides proof-of-concept for real-world RT data collection for research and is promising for the potential of natural language processing methods to support clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助lll采纳,获得10
2秒前
化学学渣完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
爆米花应助1234采纳,获得10
3秒前
3秒前
yongjie发布了新的文献求助10
4秒前
大胖完成签到,获得积分10
5秒前
5秒前
vousme完成签到 ,获得积分10
5秒前
6秒前
丘比特应助快乐科研狗采纳,获得10
6秒前
SYLH应助zhulei采纳,获得10
7秒前
7秒前
DDy10001发布了新的文献求助10
9秒前
9秒前
雨天有伞完成签到,获得积分10
9秒前
崔凯完成签到,获得积分10
10秒前
wuxifan发布了新的文献求助10
10秒前
拼命十三娘完成签到,获得积分20
10秒前
方东发布了新的文献求助20
11秒前
爱卿5271发布了新的文献求助10
11秒前
小蘑菇应助牧紫菱采纳,获得10
12秒前
13秒前
13秒前
kaidi1发布了新的文献求助10
14秒前
青檬完成签到 ,获得积分10
15秒前
水静嫡给水静嫡的求助进行了留言
15秒前
硕shuo发布了新的文献求助10
16秒前
17秒前
CodeCraft应助xumengyu采纳,获得10
17秒前
19秒前
Jasper应助DDy10001采纳,获得10
19秒前
coolkid应助拼命十三娘采纳,获得10
19秒前
kiki发布了新的文献求助10
19秒前
20秒前
英俊的水彤完成签到 ,获得积分10
21秒前
21秒前
DD完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086