An End-to-End Natural Language Processing System for Automatically Extracting Radiation Therapy Events From Clinical Texts

医学 分数(化学) 命名实体识别 关系抽取 人工智能 自然语言处理 管道(软件) 事件(粒子物理) 信息抽取 计算机科学 程序设计语言 化学 物理 管理 有机化学 量子力学 经济 任务(项目管理)
作者
Danielle S. Bitterman,Eli Goldner,Sean Finan,David Harris,Eric B. Durbin,Harry Hochheiser,Jeremy L. Warner,Raymond H. Mak,Timothy M. Miller,Guergana Savova
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (1): 262-273 被引量:3
标识
DOI:10.1016/j.ijrobp.2023.03.055
摘要

Real-world evidence for radiation therapy (RT) is limited because it is often documented only in the clinical narrative. We developed a natural language processing system for automated extraction of detailed RT events from text to support clinical phenotyping.A multi-institutional data set of 96 clinician notes, 129 North American Association of Central Cancer Registries cancer abstracts, and 270 RT prescriptions from HemOnc.org was used and divided into train, development, and test sets. Documents were annotated for RT events and associated properties: dose, fraction frequency, fraction number, date, treatment site, and boost. Named entity recognition models for properties were developed by fine-tuning BioClinicalBERT and RoBERTa transformer models. A multiclass RoBERTa-based relation extraction model was developed to link each dose mention with each property in the same event. Models were combined with symbolic rules to create a hybrid end-to-end pipeline for comprehensive RT event extraction.Named entity recognition models were evaluated on the held-out test set with F1 results of 0.96, 0.88, 0.94, 0.88, 0.67, and 0.94 for dose, fraction frequency, fraction number, date, treatment site, and boost, respectively. The relation model achieved an average F1 of 0.86 when the input was gold-labeled entities. The end-to-end system F1 result was 0.81. The end-to-end system performed best on North American Association of Central Cancer Registries abstracts (average F1 0.90), which are mostly copy-paste content from clinician notes.We developed methods and a hybrid end-to-end system for RT event extraction, which is the first natural language processing system for this task. This system provides proof-of-concept for real-world RT data collection for research and is promising for the potential of natural language processing methods to support clinical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
223311完成签到,获得积分10
刚刚
刚刚
Happy完成签到 ,获得积分10
1秒前
fan051500完成签到,获得积分10
2秒前
李爱国应助暖暖采纳,获得10
2秒前
180霸总完成签到 ,获得积分10
2秒前
瘤子完成签到,获得积分10
3秒前
哈哈环完成签到 ,获得积分10
3秒前
完美的凝蝶完成签到 ,获得积分10
4秒前
hehuan0520完成签到,获得积分10
4秒前
4秒前
Andrew02完成签到,获得积分10
5秒前
chichenglin发布了新的文献求助30
5秒前
想抱完成签到,获得积分10
6秒前
小cc完成签到 ,获得积分0
6秒前
MJX完成签到,获得积分10
8秒前
8秒前
舒适的天奇完成签到 ,获得积分10
9秒前
后陡门的夏天完成签到 ,获得积分10
9秒前
任婷完成签到,获得积分10
9秒前
自然的听寒完成签到 ,获得积分10
9秒前
GU完成签到,获得积分10
10秒前
YUXI发布了新的文献求助10
10秒前
乐观耳机完成签到,获得积分20
10秒前
sinlar完成签到,获得积分10
11秒前
ch3oh完成签到,获得积分10
12秒前
专注灵凡完成签到,获得积分10
12秒前
wpybird完成签到,获得积分10
12秒前
xiaohanzai88完成签到,获得积分10
13秒前
七子完成签到,获得积分10
13秒前
14秒前
14秒前
zzx396完成签到,获得积分10
15秒前
ttkd11完成签到,获得积分10
15秒前
xx完成签到,获得积分10
15秒前
自然归尘完成签到,获得积分10
15秒前
段仁杰完成签到,获得积分10
16秒前
Anderson123完成签到,获得积分10
16秒前
DyLan完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818793
关于积分的说明 7922334
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320396
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443