Robotization and intelligent digital systems in the meat cutting industry: From the perspectives of robotic cutting, perception, and digital development

肉类包装业 自动化 制造工程 工厂(面向对象编程) 计算机科学 工程类 机械工程 政治学 程序设计语言 法学
作者
Weidong Xu,Yingchao He,Jiaheng Li,Jianwei Zhou,Enbo Xu,Wenjun Wang,Donghong Liu
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:135: 234-251 被引量:22
标识
DOI:10.1016/j.tifs.2023.03.018
摘要

Meat, as protein-rich food, provides essential nutrition to humans. Meat consumption is expected to increase by 15% over the next decade, requiring the meat industry to boost its capacity. However, the meat cutting industry's harsh working environment and long-term heavy workload result in a labor shortage. Low-margin and low capacity require innovative processing methods. Hence, some novel automation methods are urgently demanded to meet these challenges. Accompanied by the development of Industry 4.0, robotization and intelligent systems are progressively applied in the meat cutting industry, which can provide a flexible, adaptive, and sustainable processing approach. The paper selected 50 papers using the systematic literature review method. This paper provides an overview of the current research and commercial applications of cutting robotization from livestock, poultry, and fish in the meat industry. Additionally, intelligent sensing technologies, advanced cutting techniques, and a novel manufacturing concept called the meat factory cell, are emphasized to promote efficiency, scalability, and modularization. Finally, we discuss the potential applications of digital technologies in the meat cutting industry and the focal points of future research aiming to promote cutting robotization. The meat cutting process can be highly robotized by integrating dexterous cutting robots, advanced sensing techniques, and digital systems, driving the transformation from manual labor to robotic, efficient, and intelligent manufacturing. Consequently, robotization and intelligent digital systems can provide a brand-new manufacturing method to the meat cutting industry and advance the Meat factory 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李7完成签到,获得积分20
1秒前
1秒前
爆米花应助图灵桑采纳,获得10
2秒前
搜集达人应助图灵桑采纳,获得10
2秒前
万能图书馆应助图灵桑采纳,获得10
2秒前
韩璐完成签到,获得积分10
2秒前
汉堡包应助图灵桑采纳,获得10
3秒前
3秒前
所所应助二喵采纳,获得10
3秒前
共享精神应助兰彻采纳,获得10
4秒前
李7发布了新的文献求助20
4秒前
小云朵完成签到,获得积分20
4秒前
5秒前
lyy发布了新的文献求助10
5秒前
今后应助王思凯采纳,获得10
5秒前
万能图书馆应助chongya1采纳,获得10
5秒前
zzz发布了新的文献求助20
6秒前
解松发布了新的文献求助10
6秒前
小二郎应助111采纳,获得10
7秒前
天真有邪发布了新的文献求助10
8秒前
Orange应助jiangjiahao采纳,获得30
8秒前
YY发布了新的文献求助10
8秒前
8秒前
好奇宝宝发布了新的文献求助10
10秒前
852应助万万没想到采纳,获得10
10秒前
shs发布了新的文献求助10
10秒前
11秒前
11秒前
烟花应助大湖小舟采纳,获得10
12秒前
13秒前
14秒前
多久之前发布了新的文献求助10
15秒前
黎明的璃发布了新的文献求助10
15秒前
wujiwuhui发布了新的文献求助10
15秒前
单薄怡发布了新的文献求助10
15秒前
16秒前
欧阳振应助夨坕采纳,获得10
16秒前
16秒前
zaza发布了新的文献求助50
16秒前
IvanLing完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209