Passive Multistatic Radar Imaging of Vessel Target Using GNSS Satellites of Opportunity

全球导航卫星系统应用 计算机科学 遥感 双基地雷达 雷达成像 雷达 计算机视觉 三维雷达 人工智能 地质学 电信 全球定位系统
作者
Chuan Huang,Zhongyu Li,Hongyang An,Zhichao Sun,Junjie Wu,Jianyu Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2022.3195993
摘要

The global navigation satellite system (GNSS)-based passive radar shows potential in permanent maritime surveillance. In this paper, the GNSS signals are exploited for vessel target imaging. From the obtained radar image, meaningful information about the vessel, such as its shape, position, length, and orientation can be extracted. In addition, the vessel is observed from different angles by spatially diverse GNSS satellites, and the multistatic geometry enables to enhance the imagery quality. The main drawback of GNSS-based passive radar stays in its limited power budget. And the inaccessible motion makes the noncooperative vessel smeared using conventional radar imaging methods. To address the problems, at first, each bistatic echo over a long observation time is integrated in range and Doppler (RD) domain after removing the two-dimensional migrations. The signal-to-noise ratio can be increased after the step. Then, with respect to a particular target velocity, the local Cartesian plane is constructed, and the multiple RD maps are projected and combined in the plane to obtain the multistatic image. In view of the inaccessibility of target kinematic parameters, such imaging processing is modeled as an optimization problem, where vessel’s velocity is set as decision variable and the aim is to minimize the image entropy. Finally, particle swarm optimization (PSO) algorithm is applied to solve the optimization problem, after which a well-focused vessel image can be obtained. In May 2021, we have successfully carried out the world’s first BeiDou-based passive radar maritime experiment, and effectiveness of the proposed method is verified against the experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永曼完成签到,获得积分10
刚刚
wbx完成签到,获得积分10
刚刚
上官若男应助nnnd77采纳,获得10
刚刚
2秒前
Xiaoming85完成签到,获得积分10
2秒前
小屁孩发布了新的文献求助10
3秒前
3秒前
3秒前
tomatototo完成签到,获得积分10
3秒前
幸福大白发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
haha完成签到,获得积分10
6秒前
6秒前
niko完成签到,获得积分10
7秒前
7秒前
7秒前
善学以致用应助chen采纳,获得10
7秒前
Dr_guo发布了新的文献求助10
9秒前
在那呢发布了新的文献求助10
9秒前
11发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
maliao发布了新的文献求助10
9秒前
11秒前
小刘同学完成签到,获得积分10
12秒前
张龙雨发布了新的文献求助10
12秒前
小李完成签到,获得积分10
12秒前
幸福大白发布了新的文献求助10
13秒前
众行绘研应助aa采纳,获得10
14秒前
我爱吃肉发布了新的文献求助10
15秒前
阿冰阿冰要科研完成签到,获得积分10
15秒前
贺光萌发布了新的文献求助10
15秒前
赘婿应助巷陌采纳,获得10
15秒前
斯文败类应助WhfeverZG采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867697
求助须知:如何正确求助?哪些是违规求助? 4159633
关于积分的说明 12898525
捐赠科研通 3913729
什么是DOI,文献DOI怎么找? 2149458
邀请新用户注册赠送积分活动 1167871
关于科研通互助平台的介绍 1070353