Passive Multistatic Radar Imaging of Vessel Target Using GNSS Satellites of Opportunity

全球导航卫星系统应用 计算机科学 遥感 双基地雷达 雷达成像 雷达 计算机视觉 三维雷达 人工智能 地质学 电信 全球定位系统
作者
Chuan Huang,Zhongyu Li,Hongyang An,Zhichao Sun,Junjie Wu,Jianyu Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2022.3195993
摘要

The global navigation satellite system (GNSS)-based passive radar shows potential in permanent maritime surveillance. In this paper, the GNSS signals are exploited for vessel target imaging. From the obtained radar image, meaningful information about the vessel, such as its shape, position, length, and orientation can be extracted. In addition, the vessel is observed from different angles by spatially diverse GNSS satellites, and the multistatic geometry enables to enhance the imagery quality. The main drawback of GNSS-based passive radar stays in its limited power budget. And the inaccessible motion makes the noncooperative vessel smeared using conventional radar imaging methods. To address the problems, at first, each bistatic echo over a long observation time is integrated in range and Doppler (RD) domain after removing the two-dimensional migrations. The signal-to-noise ratio can be increased after the step. Then, with respect to a particular target velocity, the local Cartesian plane is constructed, and the multiple RD maps are projected and combined in the plane to obtain the multistatic image. In view of the inaccessibility of target kinematic parameters, such imaging processing is modeled as an optimization problem, where vessel’s velocity is set as decision variable and the aim is to minimize the image entropy. Finally, particle swarm optimization (PSO) algorithm is applied to solve the optimization problem, after which a well-focused vessel image can be obtained. In May 2021, we have successfully carried out the world’s first BeiDou-based passive radar maritime experiment, and effectiveness of the proposed method is verified against the experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助晴空万里采纳,获得10
1秒前
4秒前
爆米花应助小孙采纳,获得10
8秒前
kiki完成签到,获得积分10
8秒前
养只缅因完成签到 ,获得积分10
9秒前
liuye完成签到,获得积分10
9秒前
紫心发布了新的文献求助10
11秒前
馆长应助明理背包采纳,获得30
11秒前
小井盖完成签到 ,获得积分10
12秒前
13秒前
帅哥完成签到,获得积分20
14秒前
王一完成签到,获得积分10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
nenoaowu应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
zhangjianzeng发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
16秒前
无花果完成签到,获得积分10
17秒前
20秒前
小孙发布了新的文献求助10
21秒前
野玫兰完成签到 ,获得积分10
22秒前
科研通AI6应助zhangjianzeng采纳,获得10
22秒前
自然剑完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537519
求助须知:如何正确求助?哪些是违规求助? 3972505
关于积分的说明 12306111
捐赠科研通 3639199
什么是DOI,文献DOI怎么找? 2003739
邀请新用户注册赠送积分活动 1039068
科研通“疑难数据库(出版商)”最低求助积分说明 928520