Passive Multistatic Radar Imaging of Vessel Target Using GNSS Satellites of Opportunity

全球导航卫星系统应用 计算机科学 遥感 双基地雷达 雷达成像 雷达 计算机视觉 三维雷达 人工智能 地质学 电信 全球定位系统
作者
Chuan Huang,Zhongyu Li,Hongyang An,Zhichao Sun,Junjie Wu,Jianyu Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2022.3195993
摘要

The global navigation satellite system (GNSS)-based passive radar shows potential in permanent maritime surveillance. In this paper, the GNSS signals are exploited for vessel target imaging. From the obtained radar image, meaningful information about the vessel, such as its shape, position, length, and orientation can be extracted. In addition, the vessel is observed from different angles by spatially diverse GNSS satellites, and the multistatic geometry enables to enhance the imagery quality. The main drawback of GNSS-based passive radar stays in its limited power budget. And the inaccessible motion makes the noncooperative vessel smeared using conventional radar imaging methods. To address the problems, at first, each bistatic echo over a long observation time is integrated in range and Doppler (RD) domain after removing the two-dimensional migrations. The signal-to-noise ratio can be increased after the step. Then, with respect to a particular target velocity, the local Cartesian plane is constructed, and the multiple RD maps are projected and combined in the plane to obtain the multistatic image. In view of the inaccessibility of target kinematic parameters, such imaging processing is modeled as an optimization problem, where vessel’s velocity is set as decision variable and the aim is to minimize the image entropy. Finally, particle swarm optimization (PSO) algorithm is applied to solve the optimization problem, after which a well-focused vessel image can be obtained. In May 2021, we have successfully carried out the world’s first BeiDou-based passive radar maritime experiment, and effectiveness of the proposed method is verified against the experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悲伤半导体应助Transient采纳,获得10
1秒前
LabRat完成签到 ,获得积分10
1秒前
2秒前
tsm完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
好好的i完成签到,获得积分10
5秒前
mawanyu发布了新的文献求助10
6秒前
无名完成签到,获得积分10
7秒前
雪白问兰应助元谷雪采纳,获得10
8秒前
机灵不评发布了新的文献求助10
8秒前
哇咔咔完成签到,获得积分10
8秒前
CRane发布了新的文献求助30
8秒前
Akim应助ashaylo采纳,获得10
11秒前
哇咔咔发布了新的文献求助10
11秒前
英俊的铭应助eason采纳,获得10
11秒前
李长吉完成签到,获得积分10
11秒前
羽宇完成签到,获得积分0
12秒前
14秒前
Majician完成签到,获得积分10
14秒前
暴躁的二狗完成签到,获得积分10
16秒前
16秒前
郝宝真发布了新的文献求助10
18秒前
pluto完成签到,获得积分0
18秒前
18秒前
风中的电脑完成签到,获得积分10
20秒前
小熊完成签到,获得积分10
22秒前
22秒前
eason发布了新的文献求助10
24秒前
竹羽完成签到 ,获得积分10
24秒前
ashaylo发布了新的文献求助10
25秒前
齐嘉懿完成签到,获得积分10
25秒前
25秒前
25秒前
27秒前
29秒前
土豆发布了新的文献求助30
29秒前
eason完成签到,获得积分10
29秒前
前进的光完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813701
关于积分的说明 7901715
捐赠科研通 2473342
什么是DOI,文献DOI怎么找? 1316778
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175