Integrating human brain proteomic data with genome-wide association study findings identifies novel brain proteins in substance use traits

全基因组关联研究 生物 遗传关联 转录组 蛋白质组 遗传学 计算生物学 外显子组测序 基因 1000基因组计划 基因表达 单核苷酸多态性 表型 基因型
作者
Sylvanus Toikumo,Heng Xu,Joel Gelernter,Rachel L. Kember,Henry R. Kranzler
出处
期刊:Neuropsychopharmacology [Springer Nature]
卷期号:47 (13): 2292-2299 被引量:6
标识
DOI:10.1038/s41386-022-01406-1
摘要

Despite the identification of a growing number of genetic risk loci for substance use traits (SUTs), the impact of these loci on protein abundance and the potential utility of relevant proteins as therapeutic targets are unknown. We conducted a proteome-wide association study (PWAS) in which we integrated human brain proteomes from discovery (Banner; N = 152) and validation (ROSMAP; N = 376) datasets with genome-wide association study (GWAS) summary statistics for 4 SUTs. The 4 samples comprised GWAS of European-ancestry individuals for smoking initiation [Smk] (N = 1,232,091), alcohol use disorder [AUD] (N = 313,959), cannabis use disorder [CUD] (N = 384,032), and opioid use disorder [OUD] (N = 302,585). We conducted transcriptome-wide association studies (TWAS) with human brain transcriptomic data to examine the overlap of genetic effects at the proteomic and transcriptomic levels and characterize significant genes through conditional, colocalization, and fine-mapping analyses. We identified 27 genes (Smk = 21, AUD = 3, CUD = 2, OUD = 1) that were significantly associated with cis-regulated brain protein abundance. Of these, 7 showed evidence for causality (Smk: NT5C2, GMPPB, NQO1, RHOT2, SRR and ACTR1B; and AUD: CTNND1). Cis-regulated transcript levels for 8 genes (Smk = 6, CUD = 1, OUD = 1) were associated with SUTs, indicating that genetic loci could confer risk for these SUTs by modulating both gene expression and proteomic abundance. Functional studies of the high-confidence risk proteins identified here are needed to determine whether they are modifiable targets and useful in developing medications and biomarkers for these SUTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三卡车安排你完成签到,获得积分10
刚刚
请叫我风吹麦浪应助Seiswan采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
曾经以亦完成签到,获得积分10
2秒前
所所应助发疯的游子采纳,获得10
2秒前
3秒前
jcm发布了新的文献求助10
4秒前
辛勤的初晴完成签到,获得积分20
4秒前
Scidog发布了新的文献求助10
4秒前
单于静柏完成签到,获得积分10
5秒前
校长发布了新的文献求助10
5秒前
6秒前
御觞丶完成签到,获得积分10
6秒前
今后应助zhui采纳,获得10
7秒前
7秒前
SciGPT应助雾蓝采纳,获得10
7秒前
lulu828完成签到,获得积分10
8秒前
8秒前
科研闲人完成签到,获得积分10
9秒前
内向秋寒发布了新的文献求助10
9秒前
9秒前
黑色兔子完成签到 ,获得积分10
9秒前
10秒前
四小时充足睡眠完成签到,获得积分10
11秒前
zhang0403完成签到,获得积分10
11秒前
欢喜的毛豆完成签到 ,获得积分10
12秒前
华仔应助Eddy采纳,获得10
12秒前
小王发布了新的文献求助10
12秒前
通~发布了新的文献求助10
13秒前
MES发布了新的文献求助10
13秒前
赘婿应助jennifercui采纳,获得10
13秒前
13秒前
14秒前
14秒前
Nifeng完成签到,获得积分10
14秒前
爱听歌的依秋完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794