电子迁移率
半导体
凝聚态物理
材料科学
散射
声子
声子散射
电介质
载流子散射
载流子
晶体管
光电子学
硅
热电效应
二硫化钼
场效应晶体管
感应高电子迁移率晶体管
光学
物理
电压
冶金
热力学
量子力学
作者
Hong Kuan Ng,Du Xiang,Ady Suwardi,Guangwei Hu,Ke Yang,Yunshan Zhao,Tao Liu,Zhonghan Cao,Huajun Liu,Shisheng Li,Jing Cao,Qiang Zhu,Zhaogang Dong,Chee Kiang Ivan Tan,Dongzhi Chi,Cheng‐Wei Qiu,Kedar Hippalgaonkar,Goki Eda,Ming Yang,Jing Wu
标识
DOI:10.1038/s41928-022-00777-z
摘要
Two-dimensional (2D) semiconductors could potentially replace silicon in future electronic devices. However, the low carrier mobility in 2D semiconductors at room temperature, caused by strong phonon scattering, remains a critical challenge. Here we show that lattice distortions can reduce electron–phonon scattering in 2D materials and thus improve the charge carrier mobility. We introduce lattice distortions into 2D molybdenum disulfide (MoS2) using bulged substrates, which create ripples in the 2D material leading to a change in the dielectric constant and a suppressed phonon scattering. A two orders of magnitude enhancement in room-temperature mobility is observed in rippled MoS2, reaching ∼900 cm2 V−1 s−1, which exceeds the predicted phonon-limited mobility of flat MoS2 of 200–410 cm2 V−1 s−1. We show that our approach can be used to create high-performance room-temperature field-effect transistors and thermoelectric devices. Lattice distortions induced by ripples in two-dimensional molybdenum disulfide can reduce electron–phonon scattering, leading to improved charge carrier mobility and enhanced transistor performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI