Sensing mechanism of an Au-TiO2-Ag nanograting based on Fano resonance effects

诺共振 栅栏 功勋 光学 时域有限差分法 共振(粒子物理) 材料科学 光子学 灵敏度(控制系统) 表面等离子共振 光电子学 物理 纳米技术 等离子体子 纳米颗粒 电子工程 工程类 粒子物理学
作者
Haima Yang,Hongxin Huang,Xiaolin Liu,Zeng Li,Jun Li,Dawei Zhang,Yuwei Chen,Jin Liu
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (17): 4431-4431 被引量:26
标识
DOI:10.1364/ao.491732
摘要

In recent years, with the development of nano-photonics, Fano resonance has gained increasing attention. Due to its high sensitivity, real-time detection, and label-free properties, the Fano resonance sensor has been widely applied in the fields of biochemistry and environmental detection. To improve the sensing characteristics of Fano resonance, an Au-TiO2-Ag grating structure is proposed in this paper, and the sensing performance is enhanced by a bi-metallic grating and deposited TiO2. The characteristics of both sensing and field distribution of the model are accordingly analyzed using the finite-difference time-domain method. By varying the structural parameters such as grating period, grating height, silver film thickness, and TiO2 layer thickness, the tuning of sensing characteristics can be realized, and afterwards, the sensing performance is improved; consequently, the Fano resonance reflection spectrum with high sensitivity and a high figure of merit (FOM) value is obtained. When the grating period P = 200 nm, grating height T1 = 90 nm, silver film thickness T2 = 20 nm, TiO2 layer thickness T3 = 20 nm, and SiO2 layer thickness T4 = 600 nm, such a structure indicates favorable sensing performance, and sensor detection accuracy can reach 10-3; maximum sensitivity is 1400 nm/RIU, and maximum FOM can reach 4212RIU-1. The results demonstrate that the designed Fano resonance sensing model has good potential for application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙奕发布了新的文献求助10
1秒前
xiaotian_fan完成签到,获得积分10
1秒前
3秒前
3秒前
科研通AI2S应助laochen采纳,获得10
3秒前
盘尼西林发布了新的文献求助10
3秒前
迟大猫应助专心搞学术采纳,获得10
4秒前
6秒前
孙奕完成签到,获得积分10
7秒前
7秒前
俟天晴完成签到,获得积分10
7秒前
淡定问芙发布了新的文献求助30
8秒前
10秒前
Lewis完成签到,获得积分10
11秒前
orixero应助TranYan采纳,获得10
11秒前
猪猪hero发布了新的文献求助10
13秒前
14秒前
今后应助333采纳,获得10
15秒前
pu发布了新的文献求助10
16秒前
Akim应助梓榆采纳,获得10
17秒前
劼大大完成签到,获得积分10
17秒前
最优解完成签到 ,获得积分20
18秒前
18秒前
通~发布了新的文献求助10
18秒前
一段乐多完成签到,获得积分10
19秒前
19秒前
19秒前
给我找完成签到,获得积分10
20秒前
桐桐应助Yuki0616采纳,获得10
20秒前
小马甲应助鸣隐采纳,获得10
20秒前
ycd完成签到,获得积分10
21秒前
ark861023完成签到,获得积分10
21秒前
淡定问芙完成签到,获得积分10
21秒前
斯文败类应助惠惠采纳,获得10
22秒前
22秒前
Meowly完成签到,获得积分10
22秒前
23秒前
23秒前
陶醉觅夏发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794