The Aconitate Decarboxylase 1/Itaconate Pathway Modulates Immune Dysregulation and Associates with Cardiovascular Disease Markers and Disease Activity in Systemic Lupus Erythematosus
免疫失调
疾病
免疫系统
免疫学
医学
内科学
作者
Eduardo Patiño‐Martínez,Shuichiro Nakabo,Kan Jiang,Carmelo Carmona‐Rivera,Wanxia Li Tsai,Dillon Claybaugh,Zu‐Xi Yu,Aracely Romero,Eric Bohrnsen,Benjamin Schwarz,Miguel A. Solís-Barbosa,Luz P. Blanco,Mohammad Naqi,Yenealem Temesgen‐Oyelakin,Michael A. Davis,Zerai Manna,Sarthak Gupta,Nehal N. Mehta,Faiza Naz,Stefania Dell’Orso,Sarfaraz Hasni,Mariana J. Kaplan
The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.