Dynamic analysis of a drug resistance evolution model with nonlinear immune response

免疫系统 药物反应 响应分析 非线性系统 抗药性 药品 医学 生物 免疫学 药理学 物理 遗传学 量子力学
作者
Tengfei Wang,Xiufen Zou
出处
期刊:Mathematical biosciences [Elsevier]
卷期号:374: 109239-109239
标识
DOI:10.1016/j.mbs.2024.109239
摘要

Recent studies have utilised evolutionary mechanisms to impede the emergence of drug-resistant populations. In this paper, we develop a mathematical model that integrates hormonal treatment, immunotherapy, and the interactions among three cell types: drug-sensitive cancer cells, drug-resistant cancer cells and immune effector cells. Dynamical analysis is performed, examining the existence and stability of equilibria, thereby confirming the model's interpretability. Model parameters are calibrated using available prostate cancer data and literature. Through bifurcation analysis for drug sensitivity under different immune effector cells recruitment responses, we find that resistant cancer cells grow rapidly under weak recruitment response, maintain at a low level under strong recruitment response, and both may occur under moderate recruitment response. To quantify the competitiveness of sensitive and resistant cells, we introduce the comprehensive measures R1 and R2, respectively, which determine the outcome of competition. Additionally, we introduce the quantitative indicators CIE1 and CIE2 as comprehensive measures of the immune effects on sensitive and resistant cancer cells, respectively. These two indicators determine whether the corresponding cancer cells can maintain at a low level. Our work shows that the immune system is an important factor affecting the evolution of drug resistance and provides insights into how to enhance immune response to control resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
shouyu29应助科研通管家采纳,获得10
刚刚
刚刚
小金应助科研通管家采纳,获得20
刚刚
牛逼的昂完成签到,获得积分10
刚刚
muzi给muzi的求助进行了留言
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
yuhang完成签到 ,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
果汁完成签到,获得积分10
1秒前
NexusExplorer应助Zoe采纳,获得10
1秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
领导范儿应助junzilan采纳,获得10
3秒前
打打应助激动的一手采纳,获得10
3秒前
酷波er应助艺玲采纳,获得10
4秒前
longtengfei发布了新的文献求助10
4秒前
5秒前
5秒前
ZL发布了新的文献求助10
7秒前
luca发布了新的文献求助10
7秒前
ruby发布了新的文献求助10
7秒前
沉静的颦发布了新的文献求助10
8秒前
8秒前
cjy完成签到,获得积分10
8秒前
8秒前
9秒前
Zoe完成签到,获得积分10
9秒前
9秒前
9秒前
任性完成签到,获得积分10
9秒前
an发布了新的文献求助10
10秒前
10秒前
领导范儿应助袅袅采纳,获得10
10秒前
若狂完成签到,获得积分10
10秒前
Gyy完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759