From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery

分割 计算机科学 公民科学 卷积神经网络 人工智能 航空影像 树(集合论) 图像(数学) 模式识别(心理学) 计算机视觉 图像分割 领域(数学) 遥感 地理 生物 数学 植物 数学分析 纯数学
作者
Salim Soltani,Olga Ferlian,Nico Eisenhauer,Hannes Feilhauer,Teja Kattenborn
出处
期刊:Biogeosciences [Copernicus Publications]
卷期号:21 (11): 2909-2935 被引量:1
标识
DOI:10.5194/bg-21-2909-2024
摘要

Abstract. Knowledge of plant species distributions is essential for various application fields, such as nature conservation, agriculture, and forestry. Remote sensing data, especially high-resolution orthoimages from unoccupied aerial vehicles (UAVs), paired with novel pattern-recognition methods, such as convolutional neural networks (CNNs), enable accurate mapping (segmentation) of plant species. Training transferable pattern-recognition models for species segmentation across diverse landscapes and data characteristics typically requires extensive training data. Training data are usually derived from labor-intensive field surveys or visual interpretation of remote sensing images. Alternatively, pattern-recognition models could be trained more efficiently with plant photos and labels from citizen science platforms, which include millions of crowd-sourced smartphone photos and the corresponding species labels. However, these pairs of citizen-science-based photographs and simple species labels (one label for the entire image) cannot be used directly for training state-of-the-art segmentation models used for UAV image analysis, which require per-pixel labels for training (also called masks). Here, we overcome the limitation of simple labels of citizen science plant observations with a two-step approach. In the first step, we train CNN-based image classification models using the simple labels and apply them in a moving-window approach over UAV orthoimagery to create segmentation masks. In the second phase, these segmentation masks are used to train state-of-the-art CNN-based image segmentation models with an encoder–decoder structure. We tested the approach on UAV orthoimages acquired in summer and autumn at a test site comprising 10 temperate deciduous tree species in varying mixtures. Several tree species could be mapped with surprising accuracy (mean F1 score =0.47). In homogenous species assemblages, the accuracy increased considerably (mean F1 score =0.55). The results indicate that several tree species can be mapped without generating new training data and by only using preexisting knowledge from citizen science. Moreover, our analysis revealed that the variability in citizen science photographs, with respect to acquisition data and context, facilitates the generation of models that are transferable through the vegetation season. Thus, citizen science data may greatly advance our capacity to monitor hundreds of plant species and, thus, Earth's biodiversity across space and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爱学习的大聪明完成签到,获得积分10
1秒前
快飞飞完成签到 ,获得积分10
1秒前
LIU完成签到,获得积分10
2秒前
秘小先儿应助张晟辉采纳,获得10
2秒前
lzp发布了新的文献求助10
2秒前
Little2发布了新的文献求助10
2秒前
清爽的铭发布了新的文献求助20
2秒前
就滴滴勾儿完成签到,获得积分10
3秒前
高高高完成签到,获得积分10
3秒前
迅速的鹤完成签到,获得积分10
3秒前
传奇3应助STP顶峰相见采纳,获得10
3秒前
星期八约会猪猪侠完成签到,获得积分10
4秒前
朱先生完成签到 ,获得积分10
4秒前
不知所措的咪完成签到,获得积分10
4秒前
哆啦的空间站完成签到,获得积分10
4秒前
Army616完成签到,获得积分10
4秒前
4秒前
烂漫奇异果完成签到,获得积分10
4秒前
零一发布了新的文献求助10
5秒前
小广完成签到,获得积分10
5秒前
Leclerc应助LJQ采纳,获得10
6秒前
7秒前
野猪大王完成签到 ,获得积分10
7秒前
碧蓝幻灵完成签到,获得积分10
8秒前
8秒前
ZZ完成签到,获得积分20
8秒前
烟花应助鳄鱼蛋采纳,获得10
8秒前
拼搏尔风发布了新的文献求助30
8秒前
bkagyin应助人生若只如初见采纳,获得10
9秒前
认真丹亦完成签到 ,获得积分10
9秒前
9秒前
lily完成签到,获得积分10
10秒前
10秒前
啊撒网大大e完成签到,获得积分10
10秒前
爱吃榴莲完成签到,获得积分20
11秒前
kuiuLinvk完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051