From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery

分割 计算机科学 公民科学 卷积神经网络 人工智能 航空影像 树(集合论) 图像(数学) 模式识别(心理学) 计算机视觉 图像分割 领域(数学) 遥感 地理 生物 数学 植物 数学分析 纯数学
作者
Salim Soltani,Olga Ferlian,Nico Eisenhauer,Hannes Feilhauer,Teja Kattenborn
出处
期刊:Biogeosciences 卷期号:21 (11): 2909-2935 被引量:1
标识
DOI:10.5194/bg-21-2909-2024
摘要

Abstract. Knowledge of plant species distributions is essential for various application fields, such as nature conservation, agriculture, and forestry. Remote sensing data, especially high-resolution orthoimages from unoccupied aerial vehicles (UAVs), paired with novel pattern-recognition methods, such as convolutional neural networks (CNNs), enable accurate mapping (segmentation) of plant species. Training transferable pattern-recognition models for species segmentation across diverse landscapes and data characteristics typically requires extensive training data. Training data are usually derived from labor-intensive field surveys or visual interpretation of remote sensing images. Alternatively, pattern-recognition models could be trained more efficiently with plant photos and labels from citizen science platforms, which include millions of crowd-sourced smartphone photos and the corresponding species labels. However, these pairs of citizen-science-based photographs and simple species labels (one label for the entire image) cannot be used directly for training state-of-the-art segmentation models used for UAV image analysis, which require per-pixel labels for training (also called masks). Here, we overcome the limitation of simple labels of citizen science plant observations with a two-step approach. In the first step, we train CNN-based image classification models using the simple labels and apply them in a moving-window approach over UAV orthoimagery to create segmentation masks. In the second phase, these segmentation masks are used to train state-of-the-art CNN-based image segmentation models with an encoder–decoder structure. We tested the approach on UAV orthoimages acquired in summer and autumn at a test site comprising 10 temperate deciduous tree species in varying mixtures. Several tree species could be mapped with surprising accuracy (mean F1 score =0.47). In homogenous species assemblages, the accuracy increased considerably (mean F1 score =0.55). The results indicate that several tree species can be mapped without generating new training data and by only using preexisting knowledge from citizen science. Moreover, our analysis revealed that the variability in citizen science photographs, with respect to acquisition data and context, facilitates the generation of models that are transferable through the vegetation season. Thus, citizen science data may greatly advance our capacity to monitor hundreds of plant species and, thus, Earth's biodiversity across space and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二发布了新的文献求助10
1秒前
早睡完成签到,获得积分10
1秒前
2秒前
小丸子完成签到 ,获得积分10
2秒前
司空剑封完成签到,获得积分10
3秒前
4秒前
远山青如黛完成签到,获得积分10
4秒前
zhaoxiao发布了新的文献求助10
4秒前
liufazhan发布了新的文献求助10
4秒前
5秒前
穆小菜发布了新的文献求助10
6秒前
yiyi完成签到,获得积分10
6秒前
共享精神应助重要的善愁采纳,获得10
7秒前
迷路的翠安完成签到 ,获得积分10
9秒前
科研狗完成签到,获得积分10
10秒前
李健的小迷弟应助wood采纳,获得10
11秒前
斯文败类应助hhhh采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
兴奋的故事完成签到,获得积分10
14秒前
0128lun完成签到,获得积分10
15秒前
15秒前
15秒前
zhaoxiao发布了新的文献求助10
16秒前
重要的善愁完成签到,获得积分10
17秒前
不爱吃糖完成签到,获得积分10
17秒前
123发布了新的文献求助10
17秒前
18秒前
cjy完成签到,获得积分20
18秒前
20秒前
Owen应助a1采纳,获得30
20秒前
Pweni完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
心心发布了新的文献求助20
22秒前
后悔体验生活的北极兔完成签到,获得积分20
22秒前
cz完成签到,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243096
求助须知:如何正确求助?哪些是违规求助? 2887115
关于积分的说明 8246636
捐赠科研通 2555713
什么是DOI,文献DOI怎么找? 1383818
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631