From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery

分割 计算机科学 公民科学 卷积神经网络 人工智能 航空影像 树(集合论) 图像(数学) 模式识别(心理学) 计算机视觉 图像分割 领域(数学) 遥感 地理 生物 数学 植物 数学分析 纯数学
作者
Salim Soltani,Olga Ferlian,Nico Eisenhauer,Hannes Feilhauer,Teja Kattenborn
出处
期刊:Biogeosciences [Copernicus Publications]
卷期号:21 (11): 2909-2935 被引量:1
标识
DOI:10.5194/bg-21-2909-2024
摘要

Abstract. Knowledge of plant species distributions is essential for various application fields, such as nature conservation, agriculture, and forestry. Remote sensing data, especially high-resolution orthoimages from unoccupied aerial vehicles (UAVs), paired with novel pattern-recognition methods, such as convolutional neural networks (CNNs), enable accurate mapping (segmentation) of plant species. Training transferable pattern-recognition models for species segmentation across diverse landscapes and data characteristics typically requires extensive training data. Training data are usually derived from labor-intensive field surveys or visual interpretation of remote sensing images. Alternatively, pattern-recognition models could be trained more efficiently with plant photos and labels from citizen science platforms, which include millions of crowd-sourced smartphone photos and the corresponding species labels. However, these pairs of citizen-science-based photographs and simple species labels (one label for the entire image) cannot be used directly for training state-of-the-art segmentation models used for UAV image analysis, which require per-pixel labels for training (also called masks). Here, we overcome the limitation of simple labels of citizen science plant observations with a two-step approach. In the first step, we train CNN-based image classification models using the simple labels and apply them in a moving-window approach over UAV orthoimagery to create segmentation masks. In the second phase, these segmentation masks are used to train state-of-the-art CNN-based image segmentation models with an encoder–decoder structure. We tested the approach on UAV orthoimages acquired in summer and autumn at a test site comprising 10 temperate deciduous tree species in varying mixtures. Several tree species could be mapped with surprising accuracy (mean F1 score =0.47). In homogenous species assemblages, the accuracy increased considerably (mean F1 score =0.55). The results indicate that several tree species can be mapped without generating new training data and by only using preexisting knowledge from citizen science. Moreover, our analysis revealed that the variability in citizen science photographs, with respect to acquisition data and context, facilitates the generation of models that are transferable through the vegetation season. Thus, citizen science data may greatly advance our capacity to monitor hundreds of plant species and, thus, Earth's biodiversity across space and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雷小雷习医中给雷小雷习医中的求助进行了留言
刚刚
刚刚
唐古拉发布了新的文献求助10
1秒前
缥缈凡旋发布了新的文献求助400
1秒前
李晓东完成签到,获得积分10
1秒前
细心绮兰发布了新的文献求助30
1秒前
GSQ发布了新的文献求助10
1秒前
2秒前
2秒前
Kaka发布了新的文献求助10
2秒前
Coco完成签到,获得积分10
2秒前
王彦秀完成签到,获得积分10
3秒前
油饼发布了新的文献求助10
3秒前
大模型应助邓宇杭采纳,获得10
3秒前
华仔应助Ww采纳,获得10
3秒前
3秒前
Marvel关注了科研通微信公众号
4秒前
Damtree发布了新的文献求助10
4秒前
顾矜应助清樾采纳,获得10
4秒前
西林给西林的求助进行了留言
4秒前
4秒前
wuzheng完成签到,获得积分10
5秒前
5秒前
6秒前
popo发布了新的文献求助10
6秒前
6秒前
泡泡发布了新的文献求助10
6秒前
7秒前
王哪跑12发布了新的文献求助10
7秒前
young完成签到,获得积分10
7秒前
单丽伟发布了新的文献求助10
7秒前
坦率的匪应助GSQ采纳,获得20
7秒前
小文子发布了新的文献求助10
7秒前
唐古拉完成签到,获得积分10
8秒前
王姝涵发布了新的文献求助10
9秒前
9秒前
9秒前
盛龙完成签到,获得积分10
10秒前
c c发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559