Enhanced detection of glucose with carbon quantum dot-modified copper oxide: Computational insight and machine learning modeling of electrochemical sensing

量子点 碳量子点 电化学 氧化铜 氧化物 材料科学 纳米技术 碳纤维 化学 冶金 电极 复合材料 物理化学 复合数
作者
Naeem Ullah khan,B.P. Sharma,Sadam Hussain Tumrani,Mehvish Zahoor,Razium Ali Soomro,Tarık Küçükdeniz,Selcan Karakuş,Eman Ramadan Elsharkawy,Jun Lu,Salah M. El‐Bahy,Zeinhom M. El‐Bahy
出处
期刊:Microchemical Journal [Elsevier]
卷期号:204: 110936-110936
标识
DOI:10.1016/j.microc.2024.110936
摘要

Poor conductivity and surface passivation pose critical challenges in metal oxide structures during their application for non-enzymatic oxidation. To address this, we systematically employed in-situ deposition of carbon-quantum dots (C-dots) over copper oxide (CuO), enhancing its electrocatalytic properties for direct non-enzymatic glucose oxidation in alkaline media. The process involved the systematic deposition of varying wt.% of C-dots onto the CuO nanostructure. The electrode's sensing capability was assessed through CV, DPV, and amperometric measurements, evaluating its suitability in high (0.1 to 0.85 mM) and low glucose concentration levels (15 to 225 nM) with a representative LOD of 1.4 nM (17142.86 µA mM−1 cm−2). Additionally, the CuO-Cdot-16.6 protective coating allowed for long-term working capability, with chronoamperometric measurement confirming a 99 % current retention ability compared to pristine CuO's 39 % retention during 3500 s of continuous measurement. DFT calculations further confirmed the efficacy of CuO substrate as a scaffold for glucose adsorption. The stable CuO-glucose complex formed due to energetically favorable conditions further strengthens its potential as a sensor. Successful recoveries of spiked glucose serum samples validated the sensor's practical usage in complex matrices. Moreover, Machine learning was also adopted to validate the accuracy of glucose detection, where artificial neural network (ANN) model emerged as a suitable model to interpret the DPV derived data relationships, adding in sensor working capability and promising its future application in precision/intelligent healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI2S应助lkc采纳,获得10
刚刚
雾见春完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
lmy完成签到 ,获得积分10
1秒前
平常的可乐完成签到 ,获得积分10
2秒前
2秒前
邵初蓝完成签到,获得积分10
3秒前
卡卡发布了新的文献求助10
4秒前
岳粤完成签到,获得积分10
4秒前
5秒前
大神发布了新的文献求助10
5秒前
5秒前
5秒前
xjtu发布了新的文献求助10
6秒前
雾见春发布了新的文献求助30
6秒前
姚文超完成签到,获得积分20
7秒前
科研小菜发布了新的文献求助10
7秒前
岳粤发布了新的文献求助10
7秒前
7秒前
7秒前
yijiubingshi发布了新的文献求助10
8秒前
8秒前
wang完成签到,获得积分10
9秒前
果酱君完成签到,获得积分10
9秒前
9秒前
10秒前
zzz发布了新的文献求助10
10秒前
kingwill应助江南烟雨如笙采纳,获得20
11秒前
11秒前
zrk发布了新的文献求助10
11秒前
小毕可乐完成签到,获得积分10
12秒前
zc19891130完成签到,获得积分10
12秒前
烟花应助晗仔采纳,获得10
12秒前
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794