Enhanced detection of glucose with carbon quantum dot-modified copper oxide: Computational insight and machine learning modeling of electrochemical sensing

量子点 碳量子点 电化学 氧化铜 氧化物 材料科学 纳米技术 碳纤维 化学 冶金 电极 复合材料 物理化学 复合数
作者
Naeem Ullah khan,Bharat Prasad Sharma,Sadam Hussain Tumrani,Mehvish Zahoor,Razium Ali Soomro,Tarık Küçükdeniz,Selcan Karakuş,Eman Ramadan Elsharkawy,Jun Lu,Salah M. El‐Bahy,Zeinhom M. El‐Bahy
出处
期刊:Microchemical Journal [Elsevier]
卷期号:204: 110936-110936 被引量:12
标识
DOI:10.1016/j.microc.2024.110936
摘要

Poor conductivity and surface passivation pose critical challenges in metal oxide structures during their application for non-enzymatic oxidation. To address this, we systematically employed in-situ deposition of carbon-quantum dots (C-dots) over copper oxide (CuO), enhancing its electrocatalytic properties for direct non-enzymatic glucose oxidation in alkaline media. The process involved the systematic deposition of varying wt.% of C-dots onto the CuO nanostructure. The electrode's sensing capability was assessed through CV, DPV, and amperometric measurements, evaluating its suitability in high (0.1 to 0.85 mM) and low glucose concentration levels (15 to 225 nM) with a representative LOD of 1.4 nM (17142.86 µA mM−1 cm−2). Additionally, the CuO-Cdot-16.6 protective coating allowed for long-term working capability, with chronoamperometric measurement confirming a 99 % current retention ability compared to pristine CuO's 39 % retention during 3500 s of continuous measurement. DFT calculations further confirmed the efficacy of CuO substrate as a scaffold for glucose adsorption. The stable CuO-glucose complex formed due to energetically favorable conditions further strengthens its potential as a sensor. Successful recoveries of spiked glucose serum samples validated the sensor's practical usage in complex matrices. Moreover, Machine learning was also adopted to validate the accuracy of glucose detection, where artificial neural network (ANN) model emerged as a suitable model to interpret the DPV derived data relationships, adding in sensor working capability and promising its future application in precision/intelligent healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助苦苦采纳,获得10
刚刚
科研通AI6应助瞿琼瑶采纳,获得10
刚刚
毛果完成签到,获得积分10
1秒前
一点发布了新的文献求助20
1秒前
keyanrubbish发布了新的文献求助10
1秒前
天晴完成签到,获得积分10
1秒前
buno应助酷波zai采纳,获得10
1秒前
2秒前
烂漫耳机完成签到,获得积分10
3秒前
木槿完成签到,获得积分10
3秒前
科研通AI6应助王志新采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
4秒前
柏林寒冬应助科研通管家采纳,获得10
4秒前
4秒前
活力忆雪应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Linos应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
Akim应助单纯的爆米花采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得50
4秒前
香蕉觅云应助科研通管家采纳,获得30
4秒前
Linos应助科研通管家采纳,获得10
4秒前
受伤毛豆应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
李爱国应助阿猫采纳,获得10
4秒前
4秒前
Hilda007应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836