Enhanced detection of glucose with carbon quantum dot-modified copper oxide: Computational insight and machine learning modeling of electrochemical sensing

量子点 碳量子点 电化学 氧化铜 氧化物 材料科学 纳米技术 碳纤维 化学 冶金 电极 复合材料 物理化学 复合数
作者
Naeem Ullah khan,Bharat Prasad Sharma,Sadam Hussain Tumrani,Mehvish Zahoor,Razium Ali Soomro,Tarık Küçükdeniz,Selcan Karakuş,Eman Ramadan Elsharkawy,Jun Lu,Salah M. El‐Bahy,Zeinhom M. El‐Bahy
出处
期刊:Microchemical Journal [Elsevier]
卷期号:204: 110936-110936 被引量:12
标识
DOI:10.1016/j.microc.2024.110936
摘要

Poor conductivity and surface passivation pose critical challenges in metal oxide structures during their application for non-enzymatic oxidation. To address this, we systematically employed in-situ deposition of carbon-quantum dots (C-dots) over copper oxide (CuO), enhancing its electrocatalytic properties for direct non-enzymatic glucose oxidation in alkaline media. The process involved the systematic deposition of varying wt.% of C-dots onto the CuO nanostructure. The electrode's sensing capability was assessed through CV, DPV, and amperometric measurements, evaluating its suitability in high (0.1 to 0.85 mM) and low glucose concentration levels (15 to 225 nM) with a representative LOD of 1.4 nM (17142.86 µA mM−1 cm−2). Additionally, the CuO-Cdot-16.6 protective coating allowed for long-term working capability, with chronoamperometric measurement confirming a 99 % current retention ability compared to pristine CuO's 39 % retention during 3500 s of continuous measurement. DFT calculations further confirmed the efficacy of CuO substrate as a scaffold for glucose adsorption. The stable CuO-glucose complex formed due to energetically favorable conditions further strengthens its potential as a sensor. Successful recoveries of spiked glucose serum samples validated the sensor's practical usage in complex matrices. Moreover, Machine learning was also adopted to validate the accuracy of glucose detection, where artificial neural network (ANN) model emerged as a suitable model to interpret the DPV derived data relationships, adding in sensor working capability and promising its future application in precision/intelligent healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助whisper采纳,获得10
刚刚
笑对人生完成签到 ,获得积分10
刚刚
空禅yew发布了新的文献求助10
刚刚
1秒前
lucygaga完成签到 ,获得积分10
1秒前
鹿友菌完成签到,获得积分10
1秒前
chiron发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
田様应助123采纳,获得10
2秒前
在水一方应助jory采纳,获得10
2秒前
2秒前
2秒前
uhuh203发布了新的文献求助10
2秒前
lj发布了新的文献求助10
2秒前
坚定的小馒头完成签到 ,获得积分10
3秒前
zouzou发布了新的文献求助10
3秒前
trumning完成签到,获得积分10
3秒前
共享精神应助方方方方方采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
小脚丫发布了新的文献求助10
4秒前
AAA导弹批发李哥完成签到,获得积分10
4秒前
我是老大应助风中的傲安采纳,获得10
4秒前
hooke发布了新的文献求助10
5秒前
KIC发布了新的文献求助10
6秒前
6秒前
6秒前
含蓄若云完成签到,获得积分10
6秒前
6秒前
研友_VZG7GZ应助林二车娜姆采纳,获得30
6秒前
隐形飞雪完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
DDEEE完成签到,获得积分10
8秒前
8秒前
Huanglj完成签到,获得积分10
8秒前
小小发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894