Enhanced detection of glucose with carbon quantum dot-modified copper oxide: Computational insight and machine learning modeling of electrochemical sensing

量子点 碳量子点 电化学 氧化铜 氧化物 材料科学 纳米技术 碳纤维 化学 冶金 电极 复合材料 物理化学 复合数
作者
Naeem Ullah khan,B.P. Sharma,Sadam Hussain Tumrani,Mehvish Zahoor,Razium Ali Soomro,Tarık Küçükdeniz,Selcan Karakuş,Eman Ramadan Elsharkawy,Jun Lu,Salah M. El‐Bahy,Zeinhom M. El‐Bahy
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:204: 110936-110936
标识
DOI:10.1016/j.microc.2024.110936
摘要

Poor conductivity and surface passivation pose critical challenges in metal oxide structures during their application for non-enzymatic oxidation. To address this, we systematically employed in-situ deposition of carbon-quantum dots (C-dots) over copper oxide (CuO), enhancing its electrocatalytic properties for direct non-enzymatic glucose oxidation in alkaline media. The process involved the systematic deposition of varying wt.% of C-dots onto the CuO nanostructure. The electrode's sensing capability was assessed through CV, DPV, and amperometric measurements, evaluating its suitability in high (0.1 to 0.85 mM) and low glucose concentration levels (15 to 225 nM) with a representative LOD of 1.4 nM (17142.86 µA mM−1 cm−2). Additionally, the CuO-Cdot-16.6 protective coating allowed for long-term working capability, with chronoamperometric measurement confirming a 99 % current retention ability compared to pristine CuO's 39 % retention during 3500 s of continuous measurement. DFT calculations further confirmed the efficacy of CuO substrate as a scaffold for glucose adsorption. The stable CuO-glucose complex formed due to energetically favorable conditions further strengthens its potential as a sensor. Successful recoveries of spiked glucose serum samples validated the sensor's practical usage in complex matrices. Moreover, Machine learning was also adopted to validate the accuracy of glucose detection, where artificial neural network (ANN) model emerged as a suitable model to interpret the DPV derived data relationships, adding in sensor working capability and promising its future application in precision/intelligent healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助panfan采纳,获得10
刚刚
1秒前
归仔发布了新的文献求助10
1秒前
2秒前
丘比特应助寸愿采纳,获得10
2秒前
64658应助专注乌冬面采纳,获得10
2秒前
2秒前
快乐小霉完成签到,获得积分10
2秒前
3秒前
sure完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
李健的小迷弟应助Decline采纳,获得10
5秒前
神勇的如音完成签到,获得积分10
5秒前
YuenwahHAHA完成签到,获得积分10
5秒前
5秒前
残酷无情猫猫头完成签到,获得积分10
6秒前
李爱国应助Elix采纳,获得10
6秒前
ZXCVB发布了新的文献求助10
7秒前
研友_VZG7GZ应助归仔采纳,获得10
7秒前
weilai发布了新的文献求助10
7秒前
我是大皇帝完成签到,获得积分10
7秒前
哈哈发布了新的文献求助10
8秒前
完美世界应助贝果小脑袋采纳,获得10
8秒前
8秒前
0911wxt完成签到,获得积分10
8秒前
Akim应助17采纳,获得30
9秒前
9秒前
飞云发布了新的文献求助10
9秒前
完美世界应助moyue采纳,获得10
9秒前
充电宝应助lucky采纳,获得10
10秒前
wansida完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
肥仔完成签到,获得积分10
11秒前
0911wxt发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224