自愈水凝胶
材料科学
压阻效应
纳米技术
纳米复合材料
共价键
相容性(地球化学)
聚乙二醇
复合材料
化学工程
高分子化学
化学
有机化学
工程类
作者
Sara Domenici,Sara Micheli,Matteo Crisci,Marcus Rohnke,Hannes Hergert,Marco Allione,Mengjiao Wang,Bernd Smarlsy,Peter J. Klar,Francesco Lamberti,Elisa Cimetta,Luca Ceseracciu,Teresa Gatti
标识
DOI:10.1002/sstr.202400131
摘要
Wearable technologies are attracting increasing attention in the materials science field, prompting a quest for active components with beneficial functional attributes whilst ensuring human and environmental safety. Hydrogels are highly biocompatible platforms with interesting mechanical properties, which can be exploited for the construction of strain sensors. In order to improve the directionality of their strain response and combine it with electrical properties to fabricate piezoresistive devices, it is possible to incorporate various types of nanofillers within the polymeric network of the hydrogels. 2D materials are ideal nanofillers thanks to their intrinsic two‐dimensional anisotropy and unique electronic properties. Herein, the covalent functionalization of 2D 1T‐MoS 2 is exploited to build robust hybrid cross‐linked networks with a polyethylene glycol diacrylate gel (PEGDA). The conductivity of this nanocomposite is also further improved by inducing the interfacial polymerization of aniline. The resulting free‐standing samples demonstrate a linear and highly reversible piezoresistive response in a pressure range compatible with that of peripheral blood, while also featuring good compatibility with human skin cells, thereby making them interesting options for incorporation into wearable strain sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI