Modeling assisted synthesis of Zr-doped Li3-xIn1-xZrxCl6 with ultrahigh ionic conductivity for lithium-ion batteries

掺杂剂 锂(药物) 离子电导率 兴奋剂 材料科学 电导率 储能 离子键合 电化学 纳米技术 化学工程 无机化学 离子 光电子学 化学 物理化学 电极 热力学 工程类 电解质 医学 内分泌学 功率(物理) 物理 有机化学
作者
Jinzhao Fu,Songge Yang,Jiahui Hou,Luqman Azhari,Zeyi Yao,Xiaotu Ma,Yangtao Liu,Panawan Vanaphuti,Zi-Fei Meng,Zhenzhen Yang,Yu Zhong,Yan Wang
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:556: 232465-232465 被引量:10
标识
DOI:10.1016/j.jpowsour.2022.232465
摘要

All-solid-state lithium-ion batteries (ASSLBs) are an important milestone for the future of energy storage because of their capability of impressive energy density and outstanding safety. However, oxide and sulfide solid-state electrolytes (SSEs) suffer from either low ionic conductivity or poor chemical stability. In contrast, halide-based SSEs, are promising as candidate materials owing to high conductivity, good stability, and broad cathode compatibility. Though element doping of the SSEs is an effective and common approach to further improve their electrochemical properties, dopant exploration and optimization through solely experimental trials are both costly and time-consuming. For this aspect, computational simulations for dopant element and concentration screening are adopted in this research and zirconium is selected as a suitable dopant for Li3InCl6. The synthesized Li2.75In0.75Zr0.25Cl6 exhibited Li ionic conductivity of 5.82 × 10−3 S cm−1 at room temperature, which is the highest among reported halide SSEs. The ASSLB formed with Li2CoO2–Li2.75In0.75Zr0.25Cl6–Li/In delivers a high initial capacity of 129.3 mAh·g−1. Conclusively, this work provides an effective approach which combines computational modeling and experimental verification for the development of halide SSEs with improved stability and conductivity. The successful design approach and compelling results provide further possibilities and capabilities in future SSE research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cuc完成签到,获得积分10
7秒前
毛豆应助险胜采纳,获得10
8秒前
在水一方完成签到,获得积分0
12秒前
清颜发布了新的文献求助20
12秒前
文章多多完成签到 ,获得积分10
14秒前
asdfqwer应助weishen采纳,获得10
17秒前
18秒前
权志龙爱科研完成签到,获得积分10
19秒前
李爱国应助从容的烧鹅采纳,获得10
20秒前
小曦仔完成签到,获得积分10
20秒前
22秒前
英俊的铭应助清爽的一笑采纳,获得10
24秒前
syr完成签到 ,获得积分10
26秒前
27秒前
27秒前
啊哈哈哈完成签到,获得积分10
28秒前
29秒前
HWei完成签到,获得积分10
29秒前
甜美的瑾瑜完成签到,获得积分10
31秒前
31秒前
chenchen完成签到,获得积分10
33秒前
Vincent发布了新的文献求助10
34秒前
34秒前
Yuzuru_gyq完成签到 ,获得积分10
37秒前
Lili完成签到,获得积分10
38秒前
莫休完成签到 ,获得积分10
38秒前
jzh6666发布了新的文献求助10
40秒前
42秒前
xiao完成签到,获得积分10
42秒前
42秒前
46秒前
zdy完成签到 ,获得积分10
47秒前
asdfqwer应助weishen采纳,获得10
49秒前
一叶之秋发布了新的文献求助10
52秒前
53秒前
53秒前
桐桐完成签到,获得积分0
53秒前
流口水完成签到,获得积分10
54秒前
所所应助科研狗采纳,获得10
54秒前
luffy发布了新的文献求助10
56秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115