How does government regulation shape residents' green consumption behavior? A multi-agent simulation considering environmental values and social interaction

绿色消费 消费(社会学) 政府(语言学) 补贴 后悔 环境经济学 公共经济学 经济 消费者行为 业务 微观经济学 营销 生产(经济) 计算机科学 市场经济 语言学 机器学习 哲学 社会学 社会科学
作者
Menghua Yang,Hong Chen,Ruyin Long,Jing Wang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:331: 117231-117231 被引量:40
标识
DOI:10.1016/j.jenvman.2023.117231
摘要

Green consumption is an inevitable choice to alleviate environmental pressure and promote sustainable development. Residents' green consumption behavior decisions are influenced by a combination of external government regulation and internal consumer psychological factors. This study incorporated regret theory and environmental values into a multi-agent model to simulate residents' green consumption behavior under various government regulation scenarios. The results show that in the absence of government regulation, residents have little motivation to actively choose green consumption. In terms of a single policy, government subsidy is more conducive to promoting green consumption behavior than government penalty, and the evolutionary trend of group decision making becomes more stable with increased policy intensity. However, neither of the two single regulatory policies can fully promote residents' environmentally conscious consumption decisions. Therefore, a combination of "carrots" (government subsidy) and "sticks" (government penalty) is required to motivate a significant increase in the number of residents who choose green consumption behavior. In addition, the intensity of social interaction between residents is found to influence the stability of behavioral evolution, with higher intensity (i.e., more neighbors) resulting in greater fluctuations in group behavior but driving more residents toward green consumption. These findings can provide a theoretical reference for policy formulation of green consumption behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电脑桌完成签到,获得积分10
1秒前
汉堡包应助咿咿呀呀采纳,获得10
2秒前
科研通AI5应助大胆遥采纳,获得10
2秒前
2秒前
标致的安荷完成签到,获得积分10
3秒前
ABin完成签到,获得积分10
3秒前
跳跃难胜发布了新的文献求助10
3秒前
阳光的虔纹完成签到 ,获得积分10
3秒前
4秒前
番茄爱喝粥完成签到,获得积分10
4秒前
CipherSage应助老王爱学习采纳,获得10
4秒前
Fa完成签到,获得积分10
4秒前
5秒前
kira完成签到,获得积分10
6秒前
舒服的茹嫣完成签到,获得积分20
6秒前
Stvn发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
明理的天蓝完成签到,获得积分10
8秒前
咳咳发布了新的文献求助10
8秒前
木叶研完成签到,获得积分10
8秒前
无花果应助通~采纳,获得10
8秒前
9秒前
10秒前
周助发布了新的文献求助10
10秒前
伯赏秋白完成签到,获得积分10
10秒前
慕青应助sunzhiyu233采纳,获得10
10秒前
Sherwin完成签到,获得积分10
10秒前
羽毛完成签到,获得积分20
11秒前
xiongjian发布了新的文献求助10
11秒前
一方通行完成签到 ,获得积分10
11秒前
11秒前
monster0101完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
Stvn完成签到,获得积分20
13秒前
核桃发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740