Integration of flux footprint and physical mechanism into convolutional neural network model for enhanced simulation of urban evapotranspiration

蒸散量 足迹 卷积神经网络 均方误差 焊剂(冶金) 计算机科学 环境科学 城市热岛 人工神经网络 气象学 人工智能 统计 数学 地理 生物 考古 生态学 冶金 材料科学
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Hong Liang,Weimin Wang,Han Li,Yizhao Wei,Albert Z. Jiang,Pengwei Zhang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:619: 129016-129016 被引量:3
标识
DOI:10.1016/j.jhydrol.2022.129016
摘要

Estimating urban evapotranspiration (ET) is of great significance for urban water resource allocation and assessing the urban heat island effect. However, most current urban ET models are based on the energy balance theory to estimate urban ET. These models lead to significant errors in urban ET simulation due to the surface heterogeneity and the existence of anthropogenic heat fluxes in urban areas. To solve this issue, this study proposes a modified machine learning-based urban ET method that can estimate urban ET at the site and regional scales. To better characterize the heterogeneity of urban surfaces, the flux footprint of in-situ ET and physical mechanism of ET process are integrated into the convolutional neural network (CNN) model. The modified CNN model is tested in a fast-developing city: Shenzhen, China based on two Eddy Correlation (EC) observations. The verification results indicated that coupling flux footprint and physical mechanism into the CNN model could effectively improve the accuracy of urban ET simulation at the site scale. The modified CNN model significantly reduced the root-mean-square-error (RMSE) of 25.8 W/m2 and increased the determination coefficient (R2) of 0.17 compared to the CNN-O model (The CNN-O model is defined as the CNN model do not integrate flux footprint and physical mechanism of ET). Further analyses suggested that fusing flux footprint data into a machine learning model helps enhance ET estimation in regions with high heterogeneity and highly variable wind directions. Moreover, the integration of physical mechanisms significantly enhanced the model capability to simulate extreme ET events. The modified CNN model is further applied to map the spatial distribution of urban ET and reconstruct long-term urban ET changes. The spatial pattern of urban ET exhibited large spatial variability, where the urban ET in water bodies (mean λET larger than 480 W/m2) and vegetation-covered areas (mean λET larger than 260 W/m2) are substantially higher than the impervious surfaces (mean λET less than 30 W/m2). Long-term trend analyses demonstrated that urbanization resulted in decline in urban ET. The average decreasing rate of urban ET is 1.61 mm/yr (P < 0.05), with a 18 % decrease relative to the long-term ET average. The leading causes for the decline of urban ET are the increased impervious surfaces and the decreased radiation. This study improved the simulation accuracy of urban ET and revealed the response of urban ET to urbanization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
夕夜蟹发布了新的文献求助10
1秒前
1秒前
隐形曼青应助孤巷的猫采纳,获得10
1秒前
Sure发布了新的文献求助10
1秒前
今后应助雪媚娘采纳,获得10
2秒前
任成艳发布了新的文献求助10
2秒前
3秒前
nibaba发布了新的文献求助30
4秒前
猛猛冲完成签到,获得积分10
4秒前
科研通AI6应助邱琳采纳,获得10
4秒前
NexusExplorer应助zzjjww采纳,获得10
4秒前
莫羽倾尘发布了新的文献求助10
4秒前
憨憨发布了新的文献求助10
4秒前
4秒前
1234发布了新的文献求助20
4秒前
火星上的诗兰完成签到,获得积分10
4秒前
专注白昼发布了新的文献求助10
5秒前
潇湘夜雨发布了新的文献求助30
6秒前
yang发布了新的文献求助10
6秒前
peiyaoyan发布了新的文献求助10
6秒前
8秒前
犹豫完成签到,获得积分10
8秒前
8秒前
kyros发布了新的文献求助10
9秒前
10秒前
Zhuzhu发布了新的文献求助10
10秒前
隐形曼青应助kdjm688采纳,获得10
10秒前
10秒前
11秒前
耗尽完成签到,获得积分10
12秒前
柚柚又发布了新的文献求助10
12秒前
九九发布了新的文献求助10
12秒前
怕孤独的访云完成签到 ,获得积分10
12秒前
犹豫发布了新的文献求助10
13秒前
潇湘夜雨完成签到,获得积分10
13秒前
13秒前
阳光诗珊发布了新的文献求助10
13秒前
脑洞疼应助LQ采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578372
求助须知:如何正确求助?哪些是违规求助? 4663167
关于积分的说明 14745233
捐赠科研通 4603942
什么是DOI,文献DOI怎么找? 2526792
邀请新用户注册赠送积分活动 1496369
关于科研通互助平台的介绍 1465712