Integration of flux footprint and physical mechanism into convolutional neural network model for enhanced simulation of urban evapotranspiration

蒸散量 足迹 卷积神经网络 均方误差 焊剂(冶金) 计算机科学 环境科学 城市热岛 人工神经网络 气象学 人工智能 统计 数学 地理 生物 考古 生态学 冶金 材料科学
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Hong Liang,Weimin Wang,Han Li,Yizhao Wei,Albert Z. Jiang,Pengwei Zhang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:619: 129016-129016 被引量:3
标识
DOI:10.1016/j.jhydrol.2022.129016
摘要

Estimating urban evapotranspiration (ET) is of great significance for urban water resource allocation and assessing the urban heat island effect. However, most current urban ET models are based on the energy balance theory to estimate urban ET. These models lead to significant errors in urban ET simulation due to the surface heterogeneity and the existence of anthropogenic heat fluxes in urban areas. To solve this issue, this study proposes a modified machine learning-based urban ET method that can estimate urban ET at the site and regional scales. To better characterize the heterogeneity of urban surfaces, the flux footprint of in-situ ET and physical mechanism of ET process are integrated into the convolutional neural network (CNN) model. The modified CNN model is tested in a fast-developing city: Shenzhen, China based on two Eddy Correlation (EC) observations. The verification results indicated that coupling flux footprint and physical mechanism into the CNN model could effectively improve the accuracy of urban ET simulation at the site scale. The modified CNN model significantly reduced the root-mean-square-error (RMSE) of 25.8 W/m2 and increased the determination coefficient (R2) of 0.17 compared to the CNN-O model (The CNN-O model is defined as the CNN model do not integrate flux footprint and physical mechanism of ET). Further analyses suggested that fusing flux footprint data into a machine learning model helps enhance ET estimation in regions with high heterogeneity and highly variable wind directions. Moreover, the integration of physical mechanisms significantly enhanced the model capability to simulate extreme ET events. The modified CNN model is further applied to map the spatial distribution of urban ET and reconstruct long-term urban ET changes. The spatial pattern of urban ET exhibited large spatial variability, where the urban ET in water bodies (mean λET larger than 480 W/m2) and vegetation-covered areas (mean λET larger than 260 W/m2) are substantially higher than the impervious surfaces (mean λET less than 30 W/m2). Long-term trend analyses demonstrated that urbanization resulted in decline in urban ET. The average decreasing rate of urban ET is 1.61 mm/yr (P < 0.05), with a 18 % decrease relative to the long-term ET average. The leading causes for the decline of urban ET are the increased impervious surfaces and the decreased radiation. This study improved the simulation accuracy of urban ET and revealed the response of urban ET to urbanization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助有魅力强炫采纳,获得10
刚刚
细腻的山水完成签到 ,获得积分10
刚刚
反杀闰土的猹完成签到,获得积分10
刚刚
吴建文完成签到 ,获得积分10
1秒前
Popeye应助yue采纳,获得10
1秒前
唠叨的胡萝卜完成签到,获得积分10
2秒前
2秒前
3秒前
舒心冰彤完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
oblivious完成签到,获得积分10
8秒前
mkb完成签到,获得积分10
8秒前
8秒前
向秋发布了新的文献求助10
9秒前
王云骢完成签到,获得积分20
10秒前
甜蜜鹭洋完成签到 ,获得积分10
10秒前
xuxuxuuxuxux完成签到,获得积分10
10秒前
11秒前
月光族完成签到,获得积分10
11秒前
树下发布了新的文献求助10
11秒前
滴滴完成签到,获得积分20
13秒前
14秒前
七安发布了新的文献求助30
14秒前
LeePsy完成签到,获得积分10
14秒前
15秒前
深情安青应助hbutsj采纳,获得10
15秒前
小璐璐呀完成签到,获得积分10
16秒前
明亮安双完成签到,获得积分20
17秒前
Lemon完成签到,获得积分10
17秒前
sci一区作者完成签到,获得积分20
18秒前
包容柜子发布了新的文献求助10
18秒前
hhllhh发布了新的文献求助10
19秒前
河丫应助阳洋洋采纳,获得10
19秒前
19秒前
落霞与孤鹜齐飞完成签到,获得积分10
20秒前
20秒前
20秒前
hbuhfl完成签到,获得积分10
21秒前
小瑜完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029