Towards optimal deep fusion of imaging and clinical data via a model‐based description of fusion quality

计算机科学 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 深度学习 传感器融合 数据集成 数据建模 数据质量 公制(单位) 运营管理 数据库 经济
作者
Yuqi Wang,Xiang Li,Meghana Konanur,Brandon Konkel,Elisabeth R. Seyferth,Nathan Brajer,Jian‐Guo Liu,Mustafa R. Bashir,Kyle Lafata
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3526-3537 被引量:7
标识
DOI:10.1002/mp.16181
摘要

Abstract Background Due to intrinsic differences in data formatting, data structure, and underlying semantic information, the integration of imaging data with clinical data can be non‐trivial. Optimal integration requires robust data fusion, that is, the process of integrating multiple data sources to produce more useful information than captured by individual data sources. Here, we introduce the concept of fusion quality for deep learning problems involving imaging and clinical data. We first provide a general theoretical framework and numerical validation of our technique. To demonstrate real‐world applicability, we then apply our technique to optimize the fusion of CT imaging and hepatic blood markers to estimate portal venous hypertension, which is linked to prognosis in patients with cirrhosis of the liver. Purpose To develop a measurement method of optimal data fusion quality deep learning problems utilizing both imaging data and clinical data. Methods Our approach is based on modeling the fully connected layer (FCL) of a convolutional neural network (CNN) as a potential function, whose distribution takes the form of the classical Gibbs measure. The features of the FCL are then modeled as random variables governed by state functions, which are interpreted as the different data sources to be fused. The probability density of each source, relative to the probability density of the FCL, represents a quantitative measure of source‐bias. To minimize this source‐bias and optimize CNN performance, we implement a vector‐growing encoding scheme called positional encoding, where low‐dimensional clinical data are transcribed into a rich feature space that complements high‐dimensional imaging features. We first provide a numerical validation of our approach based on simulated Gaussian processes. We then applied our approach to patient data, where we optimized the fusion of CT images with blood markers to predict portal venous hypertension in patients with cirrhosis of the liver. This patient study was based on a modified ResNet‐152 model that incorporates both images and blood markers as input. These two data sources were processed in parallel, fused into a single FCL, and optimized based on our fusion quality framework. Results Numerical validation of our approach confirmed that the probability density function of a fused feature space converges to a source‐specific probability density function when source data are improperly fused. Our numerical results demonstrate that this phenomenon can be quantified as a measure of fusion quality. On patient data, the fused model consisting of both imaging data and positionally encoded blood markers at the theoretically optimal fusion quality metric achieved an AUC of 0.74 and an accuracy of 0.71. This model was statistically better than the imaging‐only model (AUC = 0.60; accuracy = 0.62), the blood marker‐only model (AUC = 0.58; accuracy = 0.60), and a variety of purposely sub‐optimized fusion models (AUC = 0.61–0.70; accuracy = 0.58–0.69). Conclusions We introduced the concept of data fusion quality for multi‐source deep learning problems involving both imaging and clinical data. We provided a theoretical framework, numerical validation, and real‐world application in abdominal radiology. Our data suggests that CT imaging and hepatic blood markers provide complementary diagnostic information when appropriately fused.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的凝竹完成签到,获得积分10
1秒前
atonnng完成签到,获得积分10
1秒前
1秒前
元羞花发布了新的文献求助10
1秒前
七八九完成签到 ,获得积分10
2秒前
ludy完成签到 ,获得积分10
2秒前
Rich_WH完成签到,获得积分10
2秒前
科研通AI2S应助陌语采纳,获得30
2秒前
3秒前
3秒前
3秒前
徐辉发布了新的文献求助10
4秒前
费费Queen发布了新的文献求助10
5秒前
6秒前
爆米花应助细心的日记本采纳,获得10
6秒前
元羞花完成签到,获得积分10
7秒前
8秒前
yuanyuan发布了新的文献求助10
9秒前
Owen应助贪玩的书南采纳,获得20
9秒前
10秒前
ff0110完成签到,获得积分10
10秒前
qiao发布了新的文献求助10
11秒前
12秒前
大模型应助caitlin采纳,获得10
12秒前
13秒前
13秒前
13秒前
bkagyin应助感动含烟采纳,获得10
13秒前
朴实薯片完成签到,获得积分10
14秒前
14秒前
ffx完成签到,获得积分10
15秒前
perdgs发布了新的文献求助10
15秒前
15秒前
111完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
文龙发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320