Towards optimal deep fusion of imaging and clinical data via a model‐based description of fusion quality

计算机科学 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 深度学习 传感器融合 数据集成 数据建模 数据质量 公制(单位) 运营管理 数据库 经济
作者
Yuqi Wang,Xiang Li,Meghana Konanur,Brandon Konkel,Elisabeth R. Seyferth,Nathan Brajer,Jian‐Guo Liu,Mustafa R. Bashir,Kyle Lafata
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3526-3537 被引量:7
标识
DOI:10.1002/mp.16181
摘要

Abstract Background Due to intrinsic differences in data formatting, data structure, and underlying semantic information, the integration of imaging data with clinical data can be non‐trivial. Optimal integration requires robust data fusion, that is, the process of integrating multiple data sources to produce more useful information than captured by individual data sources. Here, we introduce the concept of fusion quality for deep learning problems involving imaging and clinical data. We first provide a general theoretical framework and numerical validation of our technique. To demonstrate real‐world applicability, we then apply our technique to optimize the fusion of CT imaging and hepatic blood markers to estimate portal venous hypertension, which is linked to prognosis in patients with cirrhosis of the liver. Purpose To develop a measurement method of optimal data fusion quality deep learning problems utilizing both imaging data and clinical data. Methods Our approach is based on modeling the fully connected layer (FCL) of a convolutional neural network (CNN) as a potential function, whose distribution takes the form of the classical Gibbs measure. The features of the FCL are then modeled as random variables governed by state functions, which are interpreted as the different data sources to be fused. The probability density of each source, relative to the probability density of the FCL, represents a quantitative measure of source‐bias. To minimize this source‐bias and optimize CNN performance, we implement a vector‐growing encoding scheme called positional encoding, where low‐dimensional clinical data are transcribed into a rich feature space that complements high‐dimensional imaging features. We first provide a numerical validation of our approach based on simulated Gaussian processes. We then applied our approach to patient data, where we optimized the fusion of CT images with blood markers to predict portal venous hypertension in patients with cirrhosis of the liver. This patient study was based on a modified ResNet‐152 model that incorporates both images and blood markers as input. These two data sources were processed in parallel, fused into a single FCL, and optimized based on our fusion quality framework. Results Numerical validation of our approach confirmed that the probability density function of a fused feature space converges to a source‐specific probability density function when source data are improperly fused. Our numerical results demonstrate that this phenomenon can be quantified as a measure of fusion quality. On patient data, the fused model consisting of both imaging data and positionally encoded blood markers at the theoretically optimal fusion quality metric achieved an AUC of 0.74 and an accuracy of 0.71. This model was statistically better than the imaging‐only model (AUC = 0.60; accuracy = 0.62), the blood marker‐only model (AUC = 0.58; accuracy = 0.60), and a variety of purposely sub‐optimized fusion models (AUC = 0.61–0.70; accuracy = 0.58–0.69). Conclusions We introduced the concept of data fusion quality for multi‐source deep learning problems involving both imaging and clinical data. We provided a theoretical framework, numerical validation, and real‐world application in abdominal radiology. Our data suggests that CT imaging and hepatic blood markers provide complementary diagnostic information when appropriately fused.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃糖果的小象关注了科研通微信公众号
刚刚
廖其琪发布了新的文献求助10
2秒前
科研通AI2S应助coconut采纳,获得10
2秒前
栗子发布了新的文献求助30
2秒前
11111发布了新的文献求助10
2秒前
3秒前
吱吱吱完成签到 ,获得积分10
3秒前
3秒前
Aaron567应助strive采纳,获得20
3秒前
3秒前
4秒前
IP41320发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
DRYAN完成签到,获得积分10
7秒前
科研通AI6应助dxtmm采纳,获得20
7秒前
刘亦菲暧昧对象完成签到 ,获得积分10
8秒前
8秒前
端庄的石头完成签到 ,获得积分10
9秒前
唐小刚发布了新的文献求助10
9秒前
9秒前
小巧健柏完成签到,获得积分10
9秒前
9秒前
kkkk发布了新的文献求助10
10秒前
SciGPT应助廖其琪采纳,获得10
10秒前
Adel完成签到 ,获得积分10
10秒前
梓榆发布了新的文献求助10
10秒前
rena521完成签到,获得积分10
10秒前
文献查找发布了新的文献求助10
11秒前
嗯哼完成签到,获得积分10
12秒前
will完成签到 ,获得积分10
12秒前
13秒前
丘比特应助limone采纳,获得10
13秒前
rena521发布了新的文献求助10
15秒前
sunialnd完成签到,获得积分10
15秒前
15秒前
Ly发布了新的文献求助10
15秒前
16秒前
IP41320完成签到,获得积分20
16秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384679
求助须知:如何正确求助?哪些是违规求助? 4507461
关于积分的说明 14028131
捐赠科研通 4417171
什么是DOI,文献DOI怎么找? 2426330
邀请新用户注册赠送积分活动 1419077
关于科研通互助平台的介绍 1397405