Towards optimal deep fusion of imaging and clinical data via a model‐based description of fusion quality

计算机科学 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 深度学习 传感器融合 数据集成 数据建模 数据质量 公制(单位) 运营管理 数据库 经济
作者
Yuqi Wang,Xiang Li,Meghana Konanur,Brandon Konkel,Elisabeth R. Seyferth,Nathan Brajer,Jian‐Guo Liu,Mustafa R. Bashir,Kyle Lafata
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3526-3537 被引量:7
标识
DOI:10.1002/mp.16181
摘要

Abstract Background Due to intrinsic differences in data formatting, data structure, and underlying semantic information, the integration of imaging data with clinical data can be non‐trivial. Optimal integration requires robust data fusion, that is, the process of integrating multiple data sources to produce more useful information than captured by individual data sources. Here, we introduce the concept of fusion quality for deep learning problems involving imaging and clinical data. We first provide a general theoretical framework and numerical validation of our technique. To demonstrate real‐world applicability, we then apply our technique to optimize the fusion of CT imaging and hepatic blood markers to estimate portal venous hypertension, which is linked to prognosis in patients with cirrhosis of the liver. Purpose To develop a measurement method of optimal data fusion quality deep learning problems utilizing both imaging data and clinical data. Methods Our approach is based on modeling the fully connected layer (FCL) of a convolutional neural network (CNN) as a potential function, whose distribution takes the form of the classical Gibbs measure. The features of the FCL are then modeled as random variables governed by state functions, which are interpreted as the different data sources to be fused. The probability density of each source, relative to the probability density of the FCL, represents a quantitative measure of source‐bias. To minimize this source‐bias and optimize CNN performance, we implement a vector‐growing encoding scheme called positional encoding, where low‐dimensional clinical data are transcribed into a rich feature space that complements high‐dimensional imaging features. We first provide a numerical validation of our approach based on simulated Gaussian processes. We then applied our approach to patient data, where we optimized the fusion of CT images with blood markers to predict portal venous hypertension in patients with cirrhosis of the liver. This patient study was based on a modified ResNet‐152 model that incorporates both images and blood markers as input. These two data sources were processed in parallel, fused into a single FCL, and optimized based on our fusion quality framework. Results Numerical validation of our approach confirmed that the probability density function of a fused feature space converges to a source‐specific probability density function when source data are improperly fused. Our numerical results demonstrate that this phenomenon can be quantified as a measure of fusion quality. On patient data, the fused model consisting of both imaging data and positionally encoded blood markers at the theoretically optimal fusion quality metric achieved an AUC of 0.74 and an accuracy of 0.71. This model was statistically better than the imaging‐only model (AUC = 0.60; accuracy = 0.62), the blood marker‐only model (AUC = 0.58; accuracy = 0.60), and a variety of purposely sub‐optimized fusion models (AUC = 0.61–0.70; accuracy = 0.58–0.69). Conclusions We introduced the concept of data fusion quality for multi‐source deep learning problems involving both imaging and clinical data. We provided a theoretical framework, numerical validation, and real‐world application in abdominal radiology. Our data suggests that CT imaging and hepatic blood markers provide complementary diagnostic information when appropriately fused.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZOEzoe发布了新的文献求助30
2秒前
研友_VZG7GZ应助苍耳采纳,获得30
3秒前
3秒前
yangyang发布了新的文献求助10
3秒前
tiasn关注了科研通微信公众号
3秒前
Unshouable发布了新的文献求助10
3秒前
如意冰棍完成签到 ,获得积分10
3秒前
4秒前
4秒前
OO圈圈发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
保持好心情完成签到 ,获得积分10
5秒前
小盆呐完成签到,获得积分10
7秒前
Accept关注了科研通微信公众号
7秒前
实验大牛完成签到,获得积分10
7秒前
SYLH应助嗯嗯采纳,获得30
7秒前
莫里完成签到,获得积分10
7秒前
独特的向日葵完成签到,获得积分10
7秒前
lz发布了新的文献求助10
8秒前
Enzo发布了新的文献求助10
8秒前
8秒前
菠菜发布了新的文献求助200
8秒前
格物致知发布了新的文献求助10
9秒前
动听锦程发布了新的文献求助10
9秒前
10秒前
wdy111应助左丘以云采纳,获得20
10秒前
10秒前
10秒前
糊辣鱼完成签到 ,获得积分10
11秒前
SYLH应助Ridley采纳,获得10
11秒前
12秒前
TWOTP完成签到,获得积分10
12秒前
Asystasia7完成签到,获得积分10
12秒前
12秒前
CATH发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
小蘑菇应助傻傻的夜柳采纳,获得30
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653