Towards optimal deep fusion of imaging and clinical data via a model‐based description of fusion quality

计算机科学 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 深度学习 传感器融合 数据集成 数据建模 数据质量 公制(单位) 运营管理 数据库 经济
作者
Yuqi Wang,Xiang Li,Meghana Konanur,Brandon Konkel,Elisabeth R. Seyferth,Nathan Brajer,Jian‐Guo Liu,Mustafa R. Bashir,Kyle Lafata
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3526-3537 被引量:7
标识
DOI:10.1002/mp.16181
摘要

Abstract Background Due to intrinsic differences in data formatting, data structure, and underlying semantic information, the integration of imaging data with clinical data can be non‐trivial. Optimal integration requires robust data fusion, that is, the process of integrating multiple data sources to produce more useful information than captured by individual data sources. Here, we introduce the concept of fusion quality for deep learning problems involving imaging and clinical data. We first provide a general theoretical framework and numerical validation of our technique. To demonstrate real‐world applicability, we then apply our technique to optimize the fusion of CT imaging and hepatic blood markers to estimate portal venous hypertension, which is linked to prognosis in patients with cirrhosis of the liver. Purpose To develop a measurement method of optimal data fusion quality deep learning problems utilizing both imaging data and clinical data. Methods Our approach is based on modeling the fully connected layer (FCL) of a convolutional neural network (CNN) as a potential function, whose distribution takes the form of the classical Gibbs measure. The features of the FCL are then modeled as random variables governed by state functions, which are interpreted as the different data sources to be fused. The probability density of each source, relative to the probability density of the FCL, represents a quantitative measure of source‐bias. To minimize this source‐bias and optimize CNN performance, we implement a vector‐growing encoding scheme called positional encoding, where low‐dimensional clinical data are transcribed into a rich feature space that complements high‐dimensional imaging features. We first provide a numerical validation of our approach based on simulated Gaussian processes. We then applied our approach to patient data, where we optimized the fusion of CT images with blood markers to predict portal venous hypertension in patients with cirrhosis of the liver. This patient study was based on a modified ResNet‐152 model that incorporates both images and blood markers as input. These two data sources were processed in parallel, fused into a single FCL, and optimized based on our fusion quality framework. Results Numerical validation of our approach confirmed that the probability density function of a fused feature space converges to a source‐specific probability density function when source data are improperly fused. Our numerical results demonstrate that this phenomenon can be quantified as a measure of fusion quality. On patient data, the fused model consisting of both imaging data and positionally encoded blood markers at the theoretically optimal fusion quality metric achieved an AUC of 0.74 and an accuracy of 0.71. This model was statistically better than the imaging‐only model (AUC = 0.60; accuracy = 0.62), the blood marker‐only model (AUC = 0.58; accuracy = 0.60), and a variety of purposely sub‐optimized fusion models (AUC = 0.61–0.70; accuracy = 0.58–0.69). Conclusions We introduced the concept of data fusion quality for multi‐source deep learning problems involving both imaging and clinical data. We provided a theoretical framework, numerical validation, and real‐world application in abdominal radiology. Our data suggests that CT imaging and hepatic blood markers provide complementary diagnostic information when appropriately fused.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
BowieHuang应助wang采纳,获得10
3秒前
7秒前
领导范儿应助lin采纳,获得20
7秒前
8秒前
zhang005on发布了新的文献求助10
9秒前
加斯汀完成签到 ,获得积分10
9秒前
肖恩完成签到,获得积分10
11秒前
19秒前
完美世界应助素雅采纳,获得10
22秒前
23秒前
TJY发布了新的文献求助10
23秒前
26秒前
YH完成签到 ,获得积分10
26秒前
26秒前
27秒前
lin发布了新的文献求助20
28秒前
木木豆发布了新的文献求助10
29秒前
29秒前
29秒前
Megan发布了新的文献求助10
32秒前
34秒前
34秒前
11完成签到 ,获得积分10
37秒前
Jodie发布了新的文献求助10
37秒前
38秒前
40秒前
42秒前
科研通AI6应助1816013153采纳,获得10
43秒前
磷酸瞳完成签到 ,获得积分10
43秒前
坤坤发布了新的文献求助10
44秒前
脑洞疼应助Megan采纳,获得10
45秒前
spzdss发布了新的文献求助10
45秒前
lin完成签到,获得积分20
46秒前
48秒前
坤坤完成签到,获得积分20
51秒前
香蕉觅云应助坤坤采纳,获得10
54秒前
镓氧锌钇铀应助shaun采纳,获得20
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558014
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670012
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514838
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459619