cuRL: A Generic Framework for Bi-Criteria Optimum Path-Finding Based on Deep Reinforcement Learning

规划师 最短路径问题 计算机科学 强化学习 路径(计算) 数学优化 运筹学 人工智能 理论计算机科学 数学 图形 计算机网络
作者
Chao Chen,Lujia Li,Ming Li,Yanhua Li,Zhu Wang,Fei Wu,Chaocan Xiang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2022.3219543
摘要

Traditional path-finding studies basically focus on planning the path with the shortest travel distance or the least travel time over city road networks. In recent years, with the increasing needs of diverse routing services in smart cities, the bi-criteria optimum path-finding problem (i.e., minimizing path distance and optimizing extra cost or utility according to users’ preference) has drawn wide attention. For instance, in addition to distance, the previous studies further find routes with more scenery (utility) or less crime risk (cost). However, existing works are scenario-oriented which optimize specific cost or utility, ignoring that the routing planner should be universal to deal with both cost and utility in different real-life scenarios. To fill this gap, this paper proposes a generic bi-criteria optimum path-finding framework ( cu RL) based on deep reinforcement learning (DRL). Specifically, we design a novel state representation and reward function for the DRL model of cuRL to overcome the challenges that 1) the cost and utility should be optimized with minimal path distance in a unified manner; 2) the diverse distributions of cost and utility in various scenarios should be well-addressed. Then, a transition preprocessing method is proposed to enable the efficient training of DRL and avoid detours. Finally, simulations are performed to verify the effectiveness of cuRL , where two criteria (i.e., solar radiation and crime risk) are modelled based on the real-world data in downtown New York. Comparing with a set of baseline algorithms, the evaluation results demonstrate the priority of the proposed framework for its generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤火虫发布了新的文献求助10
刚刚
刚刚
风雨中奔跑的兔子完成签到,获得积分10
1秒前
Hmc完成签到 ,获得积分10
1秒前
Kira完成签到,获得积分10
1秒前
四月完成签到 ,获得积分10
2秒前
孙先生YY发布了新的文献求助10
2秒前
犹豫信封发布了新的文献求助10
3秒前
张亚朋完成签到,获得积分10
4秒前
老妖怪完成签到,获得积分10
4秒前
李爱国应助包容的瑾瑜采纳,获得10
4秒前
5秒前
6秒前
小齐完成签到 ,获得积分10
7秒前
7秒前
科目三应助专注的冰巧采纳,获得10
8秒前
8秒前
hanping完成签到,获得积分10
8秒前
小王时完成签到,获得积分10
8秒前
zz完成签到,获得积分10
8秒前
莫非完成签到,获得积分10
8秒前
芝麻发布了新的文献求助10
9秒前
BP完成签到,获得积分10
10秒前
Hannah完成签到,获得积分10
10秒前
ICY完成签到,获得积分10
10秒前
10秒前
11秒前
Ava应助犹豫的觅云采纳,获得10
12秒前
12秒前
12秒前
qwe完成签到,获得积分10
12秒前
乐乐应助张文静采纳,获得10
13秒前
13秒前
听雨潇潇完成签到,获得积分10
13秒前
13秒前
13秒前
lagom完成签到,获得积分10
14秒前
曾经青亦完成签到,获得积分10
14秒前
大反应釜完成签到,获得积分10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650