卷积(计算机科学)
卷积神经网络
人工智能
特征(语言学)
计算机科学
目标检测
模式识别(心理学)
图层(电子)
领域(数学)
比例(比率)
对象(语法)
曲面(拓扑)
特征提取
深度学习
计算机视觉
人工神经网络
数学
材料科学
物理
语言学
哲学
几何学
量子力学
纯数学
复合材料
作者
Han Duan,Jian Huang,Weike Liu,Feng Shu
标识
DOI:10.1109/icit48603.2022.10002822
摘要
In modern manufacturing, quality inspection of object surfaces has already become indispensable in the production. Faster Region Convolutional Neural Network (Faster R-CNN), a deep learning object detection algorithm, has been gradually applied in the field of inspection, but it is of low accuracy in steel surface defect detection. In this paper, a detection method based on improved Faster R-CNN is proposed. In the method, a modified backbone network extracts features from images, deformable convolution kernels replace conventional convolution kernels to make location more precise, and the multi-scale feature layer extracts feature maps of defects in different scales. In the experiment, the solution comes to a mean Average Precision (mAP) of 0.774 on NEU-DET dataset, exceeding the original Faster RCNN model of 0.7 substantially.
科研通智能强力驱动
Strongly Powered by AbleSci AI