VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (11): 11139-11155 被引量:18
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
桐桐应助甜甜亦丝采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
鱼鱼完成签到 ,获得积分10
4秒前
6秒前
汉堡包应助人间不清醒采纳,获得10
7秒前
香蕉觅云应助林途采纳,获得10
8秒前
coco发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
fifteen应助我们太久没见了采纳,获得10
11秒前
13秒前
kunny完成签到 ,获得积分10
14秒前
15秒前
科研通AI6应助qi采纳,获得30
15秒前
16秒前
尧风完成签到 ,获得积分10
16秒前
16秒前
17秒前
火之高兴完成签到,获得积分10
17秒前
动听千风完成签到,获得积分10
18秒前
快乐小狗发布了新的文献求助10
18秒前
无情颖完成签到 ,获得积分10
19秒前
甜甜亦丝发布了新的文献求助10
20秒前
20秒前
汉堡包应助迷人的山灵采纳,获得10
20秒前
20秒前
bkagyin应助孙勇发采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
林途发布了新的文献求助10
22秒前
aiomn完成签到 ,获得积分10
22秒前
李健应助桃桃星冰乐采纳,获得10
22秒前
动听千风发布了新的文献求助10
22秒前
ZBY完成签到,获得积分10
22秒前
鱼跃完成签到,获得积分10
22秒前
vivy完成签到 ,获得积分10
23秒前
腰果虾仁发布了新的文献求助10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971