VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11139-11155 被引量:11
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的眼神完成签到,获得积分10
刚刚
刚刚
Jasper应助hhhm采纳,获得10
1秒前
冷酷的冰旋完成签到,获得积分10
2秒前
伶俐的刺猬完成签到 ,获得积分10
3秒前
动听皮带发布了新的文献求助30
4秒前
4秒前
5秒前
SciGPT应助开心的听双采纳,获得10
6秒前
鲤鱼冰海发布了新的文献求助10
10秒前
CodeCraft应助龙傲天采纳,获得10
11秒前
Kv完成签到,获得积分10
12秒前
HaohaoLi发布了新的文献求助10
14秒前
16秒前
baniu完成签到,获得积分20
18秒前
23秒前
小脑斧完成签到,获得积分10
24秒前
jinyy发布了新的文献求助10
29秒前
方方99完成签到 ,获得积分0
30秒前
深情海秋完成签到,获得积分10
30秒前
妙妙完成签到,获得积分10
31秒前
科研通AI2S应助77采纳,获得10
32秒前
HaohaoLi完成签到,获得积分10
34秒前
彭于晏应助做事不太冷静采纳,获得10
36秒前
娟娟加油完成签到 ,获得积分10
37秒前
37秒前
加厚加大完成签到 ,获得积分10
39秒前
薰硝壤应助无情的访冬采纳,获得10
41秒前
淡然安雁应助科研通管家采纳,获得10
42秒前
赘婿应助科研通管家采纳,获得20
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
不配.应助科研通管家采纳,获得30
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
淡然安雁应助科研通管家采纳,获得10
42秒前
SciGPT应助科研通管家采纳,获得10
42秒前
42秒前
43秒前
bai完成签到,获得积分10
46秒前
缓慢的烨伟完成签到,获得积分10
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141210
求助须知:如何正确求助?哪些是违规求助? 2792192
关于积分的说明 7801885
捐赠科研通 2448394
什么是DOI,文献DOI怎么找? 1302521
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237