VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11139-11155 被引量:18
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓年念完成签到,获得积分10
1秒前
1秒前
Windsea完成签到,获得积分10
1秒前
李健应助苟文锋采纳,获得10
2秒前
何雨航发布了新的文献求助10
2秒前
3秒前
3秒前
Lucas应助lily采纳,获得10
4秒前
4秒前
lhr关闭了lhr文献求助
4秒前
5秒前
6秒前
7秒前
隐形曼青应助科研进化中采纳,获得10
7秒前
顶上之战发布了新的文献求助30
8秒前
千早爱音应助123采纳,获得10
10秒前
10秒前
chenmeimei2012完成签到 ,获得积分10
11秒前
11秒前
John发布了新的文献求助10
12秒前
13秒前
苟文锋发布了新的文献求助10
14秒前
15秒前
eating完成签到,获得积分10
16秒前
Windsea发布了新的文献求助10
17秒前
17秒前
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
清脆天空发布了新的文献求助10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
及禾应助科研通管家采纳,获得20
17秒前
17秒前
浮游应助科研通管家采纳,获得10
18秒前
fyattojsk应助科研通管家采纳,获得20
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452