VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11139-11155 被引量:18
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨榆藤完成签到,获得积分10
1秒前
隐形曼青应助eseme采纳,获得30
1秒前
花椰菜发布了新的文献求助10
3秒前
尉迟仰发布了新的文献求助30
3秒前
4秒前
4秒前
科研通AI6应助好蓝采纳,获得10
4秒前
bkagyin应助qingchi采纳,获得10
4秒前
今后应助bai采纳,获得10
5秒前
在水一方应助fpwx采纳,获得10
5秒前
5秒前
Jasper应助beiyue采纳,获得10
5秒前
锟斤拷烫烫烫完成签到,获得积分10
5秒前
沙lulu沙完成签到,获得积分10
6秒前
梁Sir完成签到,获得积分10
7秒前
眼科女医生小魏完成签到,获得积分10
7秒前
7秒前
随缘发布了新的文献求助10
9秒前
辛勤啤酒发布了新的文献求助10
10秒前
务实凡灵发布了新的文献求助10
10秒前
chen完成签到,获得积分10
11秒前
11秒前
闲出屁国公主完成签到 ,获得积分10
13秒前
李昕123发布了新的文献求助10
13秒前
14秒前
chen发布了新的文献求助10
14秒前
小圆圈发布了新的文献求助10
14秒前
15秒前
xiao99完成签到,获得积分10
16秒前
NRS123发布了新的文献求助20
16秒前
诺诺完成签到,获得积分10
16秒前
Hotaru完成签到,获得积分10
17秒前
仔wang完成签到,获得积分10
17秒前
花生完成签到 ,获得积分10
18秒前
19秒前
100发布了新的文献求助10
19秒前
张张磊发布了新的文献求助10
19秒前
ding应助勋章采纳,获得10
20秒前
赘婿应助夏安采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400370
求助须知:如何正确求助?哪些是违规求助? 4519664
关于积分的说明 14076262
捐赠科研通 4432553
什么是DOI,文献DOI怎么找? 2433708
邀请新用户注册赠送积分活动 1425910
关于科研通互助平台的介绍 1404615