VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11139-11155 被引量:11
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nooooo完成签到,获得积分10
刚刚
夏昼发布了新的文献求助10
刚刚
cometx完成签到 ,获得积分10
1秒前
路之遥兮发布了新的文献求助10
1秒前
yy发布了新的文献求助10
1秒前
1秒前
852应助100采纳,获得10
1秒前
爱静静应助cruise采纳,获得10
2秒前
Singularity应助cruise采纳,获得10
2秒前
VDC应助cruise采纳,获得30
2秒前
2秒前
2秒前
了晨完成签到 ,获得积分10
3秒前
小xy完成签到,获得积分10
3秒前
4秒前
小昼完成签到 ,获得积分10
4秒前
尊敬的完成签到,获得积分10
5秒前
5秒前
整齐海秋完成签到,获得积分10
5秒前
5秒前
善学以致用应助白榆采纳,获得10
5秒前
JamesPei应助易达采纳,获得10
6秒前
6秒前
6秒前
圣晟胜发布了新的文献求助10
6秒前
xx发布了新的文献求助10
7秒前
忧郁觅柔完成签到 ,获得积分10
7秒前
追寻夜香发布了新的文献求助10
7秒前
昊康好完成签到,获得积分10
7秒前
8秒前
yy完成签到,获得积分10
8秒前
9秒前
缓慢天抒完成签到 ,获得积分10
9秒前
科研通AI5应助路之遥兮采纳,获得10
9秒前
爱睡觉的亮亮完成签到,获得积分10
10秒前
圈圈发布了新的文献求助10
10秒前
顾矜应助无聊先知采纳,获得10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678