VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (11): 11139-11155 被引量:18
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白应助weiwei采纳,获得10
1秒前
1秒前
1秒前
雪山飞龙发布了新的文献求助10
1秒前
2秒前
iiilll完成签到,获得积分10
2秒前
Rr完成签到,获得积分10
2秒前
MchemG应助725采纳,获得10
2秒前
直率小霜完成签到,获得积分10
3秒前
3秒前
jiaxzh关注了科研通微信公众号
4秒前
s615完成签到,获得积分0
6秒前
珈小羽完成签到,获得积分10
6秒前
6秒前
XXU发布了新的文献求助10
6秒前
7秒前
谷歌狗完成签到,获得积分10
8秒前
CipherSage应助满眼星辰采纳,获得10
8秒前
鲤鱼发布了新的文献求助10
10秒前
tomorrow9完成签到 ,获得积分10
10秒前
无语的大门完成签到,获得积分10
10秒前
11秒前
12秒前
万物安生发布了新的文献求助10
13秒前
诗图发布了新的文献求助10
14秒前
哈哈哈完成签到,获得积分10
15秒前
雪山飞龙发布了新的文献求助10
15秒前
XXU完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
hope_sun完成签到 ,获得积分10
18秒前
Owen应助任性的忆南采纳,获得10
18秒前
18秒前
19秒前
yznfly应助王kk采纳,获得20
20秒前
jinggaier完成签到 ,获得积分10
21秒前
zrx关注了科研通微信公众号
22秒前
22秒前
YC发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403