重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Ya-Hu Yang,Xiangzhou Gao,Yu Wang,Shen-Min Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11139-11155 被引量:37
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助小樊同学采纳,获得10
刚刚
刚刚
淡定翠容完成签到,获得积分10
刚刚
熬猪油完成签到,获得积分20
1秒前
汤小议耶完成签到,获得积分10
1秒前
xhsz1111发布了新的文献求助10
1秒前
1秒前
一支得卦发布了新的文献求助10
1秒前
hq6045x发布了新的文献求助10
2秒前
顺利葵阴发布了新的文献求助10
2秒前
五五完成签到,获得积分10
2秒前
白藏主发布了新的文献求助10
2秒前
3秒前
大模型应助倚栏听风采纳,获得10
3秒前
CipherSage应助Gaojin锦采纳,获得10
3秒前
bkagyin应助研究生采纳,获得10
3秒前
3秒前
小豆包发布了新的文献求助10
3秒前
麦麦脆汁猪完成签到 ,获得积分10
3秒前
AbleTF完成签到,获得积分10
4秒前
4秒前
4秒前
ents完成签到,获得积分10
5秒前
含糊的紫文完成签到,获得积分10
5秒前
5秒前
5秒前
Jasper应助FN_09采纳,获得10
5秒前
5秒前
悲哀藏在现实中完成签到,获得积分10
6秒前
qian发布了新的文献求助30
6秒前
语芙发布了新的文献求助10
6秒前
虞头星星完成签到 ,获得积分10
7秒前
sy发布了新的文献求助10
7秒前
7秒前
momo发布了新的文献求助10
8秒前
snowwww完成签到,获得积分10
8秒前
充电宝应助缓慢怜翠采纳,获得10
8秒前
8秒前
hcmsaobang2001完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605