亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Yahu Yang,Xiangzhou Gao,Yu Wang,Shenmin Song
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (11): 11139-11155 被引量:18
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的元灵完成签到,获得积分20
1秒前
传奇3应助zjcbk985采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
zjcbk985发布了新的文献求助10
1分钟前
maher完成签到 ,获得积分10
2分钟前
苗苗完成签到 ,获得积分10
2分钟前
我刷的烧饼贼亮完成签到 ,获得积分10
2分钟前
zjcbk985完成签到,获得积分10
2分钟前
可爱的函函应助zjcbk985采纳,获得10
3分钟前
3分钟前
李爱国应助包李采纳,获得10
3分钟前
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
zjcbk985发布了新的文献求助10
3分钟前
Haydeehu完成签到,获得积分10
3分钟前
星际舟完成签到,获得积分10
3分钟前
JamesPei应助百里幻竹采纳,获得10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
caterpillar完成签到,获得积分10
5分钟前
5分钟前
苗苗发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
渔火完成签到 ,获得积分10
5分钟前
Eileen完成签到 ,获得积分10
5分钟前
桐桐应助小小娜采纳,获得10
7分钟前
浮游应助百里幻竹采纳,获得10
7分钟前
大模型应助科研通管家采纳,获得30
7分钟前
满意人英完成签到,获得积分10
7分钟前
7分钟前
yindi1991完成签到 ,获得积分10
7分钟前
小小娜发布了新的文献求助10
7分钟前
大闲鱼铭一完成签到 ,获得积分10
7分钟前
blenx完成签到,获得积分10
7分钟前
大旭完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626300
求助须知:如何正确求助?哪些是违规求助? 4025269
关于积分的说明 12458610
捐赠科研通 3710566
什么是DOI,文献DOI怎么找? 2046701
邀请新用户注册赠送积分活动 1078709
科研通“疑难数据库(出版商)”最低求助积分说明 961115