VAMYOLOX: An Accurate and Efficient Object Detection Algorithm Based on Visual Attention Mechanism for UAV Optical Sensors

计算机科学 机制(生物学) 目标检测 对象(语法) 计算机视觉 人工智能 算法 模式识别(心理学) 物理 量子力学
作者
Ya-Hu Yang,Xiangzhou Gao,Yu Wang,Shen-Min Song
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 11139-11155 被引量:37
标识
DOI:10.1109/jsen.2022.3219199
摘要

Unmanned aerial vehicles (UAVs) have been widely used in various fields. As one of the key technologies in improving the autonomous sensing ability of UAV optical sensors, object detection has become a research focus in recent years. Since UAVs usually navigate at different vertical heights, the object scales and sensor field of view change violently, which brings a great difficulty to the optimization of the model. Moreover, when a UAV is flying at low level rapidly, it may cause the motion blur phenomenon on objects that are highly dense in position, leading to great challenge for distinction of these objects. To address the extremely tough problems discussed above, we propose an accurate and efficient object detection algorithm, namely, VAMYOLOX. Based on YOLOX, we first redesigned the classification and regression loss function of the model to better conduct classification and localization under complex motion blur and dense scenes. Then, we increase another prediction head to detect lots of tiny objects to ultimately improve the detection ability of the model for multiscale objects. Finally, we redesigned the neck of the network by introducing the triplet attention module (TAM) to find attention regions in scenes with dense objects and in images that cover a large area, accordingly enhancing the features extracted by the backbone network. Extensive experiments on the VisDrone dataset widely used in the research of UAV image object detection show that VAMYOLOX has achieved the state-of-the-art (SOTA) performance with good interpretability in UAV optical sensors captured scenes. On the VisDrone-DET-test-dev subset, the average precision (AP) of VAMYOLOX is 25.31%, outperforming the previous SOTA model (CornerNet) by 1.88%. On the VisDrone-DET-val subset, the AP of our method is 29.4%, achieving a highly competitive result with previous SOTA method (AMRNet). Not only that, VAMYOLOX achieves a maximum improvement of 2.72% compared to the AP of the baseline model (YOLOX). In addition, compared with other methods, our method has a significant advantage in speed and can meet the needs of different scenarios. The PyTorch code and trained models are available at https://github.com/yangyahu-1994/VAMYOLOX .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HJJHJH发布了新的文献求助10
1秒前
3秒前
3秒前
华仔应助自由飞翔采纳,获得10
6秒前
活力元冬完成签到,获得积分10
6秒前
嘛籽m完成签到 ,获得积分10
8秒前
半生瓜发布了新的文献求助10
8秒前
mochi完成签到,获得积分10
8秒前
求助人员发布了新的文献求助10
8秒前
文静的蜗牛完成签到,获得积分10
9秒前
10秒前
orixero应助Rena采纳,获得10
10秒前
luye完成签到,获得积分10
10秒前
zhangyuze完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
氧硫硒锑铋完成签到,获得积分10
10秒前
殷勤的紫槐应助C_Note采纳,获得200
10秒前
研友_VZG7GZ应助卡拉米采纳,获得10
10秒前
wish完成签到,获得积分20
11秒前
lemon完成签到,获得积分10
12秒前
0000发布了新的文献求助10
12秒前
13秒前
啦啦啦发布了新的文献求助10
13秒前
善学以致用应助瀼瀼采纳,获得10
13秒前
14秒前
吴巧完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
YOGA发布了新的文献求助10
15秒前
领导范儿应助dingding采纳,获得10
15秒前
桐桐应助兰lanlan采纳,获得10
16秒前
科研通AI6应助求助人员采纳,获得10
16秒前
Jiang完成签到,获得积分10
16秒前
17秒前
17秒前
罗谦平完成签到,获得积分10
17秒前
18秒前
Bienk发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076