电化学
材料科学
析氧
化学工程
退火(玻璃)
煅烧
表面改性
碳纤维
涂层
氧气
阴极
纳米技术
电极
复合数
化学
催化作用
复合材料
有机化学
物理化学
工程类
作者
Florian Klein,Claudia Pfeifer,Joachim Bansmann,Zenonas Jusys,R. Jürgen Behm,Margret Wohlfahrt‐Mehrens,Mika Lindén,Peter Axmann
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2022-12-01
卷期号:169 (12): 120533-120533
被引量:2
标识
DOI:10.1149/1945-7111/acaa5c
摘要
The electrochemical activation of Li 2 MnO 3 domains in Li- and Mn-rich layered oxides (LRLO) is highly important, and can be tuned by surface modification of the active materials to improve their cycling performance. In this study, citric acid was employed as a combined organic acid, reducing agent, and carbon precursor in order to remove surface residues from the calcination process, implement an oxygen deficient layer on the surface of the primary LRLO particles, and cover their surface with a carbon-containing coating after a final annealing step. A broad selection of bulk and surface sensitive characterization methods was used to characterize the post-treated spherical particles, providing the evidence for successful creation of an oxygen deficient near-surface region, covered by carbon-containing deposits. Post-treated materials show enhanced electrochemical discharge capacities after progressive Li 2 MnO 3 activation, reaching maximum capacities of 247 mAh g −1 . Gassing measurements reveal the suppression of oxygen release during the first cycle, concomitant with an increased CO 2 formation for the carbon-coated materials. The voltage profile analysis in combination with post-mortem characterization after 300 cycles provide insights into the aging of the treated materials, which underlines the importance of the relationship between structural changes during scalable post-treatment and the electrochemical performance of the powders.
科研通智能强力驱动
Strongly Powered by AbleSci AI