Deep Learning Pipeline for Spotting Macro- and Micro-expressions in Long Video Sequences Based on Action Units and Optical Flow

定位 管道(软件) 光流 计算机科学 人工智能 保险丝(电气) 任务(项目管理) 动作(物理) 深度学习 定位关键字 帧(网络) 计算机视觉 模式识别(心理学) 语音识别 图像(数学) 程序设计语言 物理 工程类 电气工程 经济 管理 电信 量子力学
作者
Bo Yang,Jianming Wu,Kazushi Ikeda,Gen Hattori,Masaru Sugano,Yusuke Iwasawa,Yutaka Matsuo
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:165: 63-74 被引量:7
标识
DOI:10.1016/j.patrec.2022.12.001
摘要

This paper is an extension of our previously published ACM Multimedia 2022 paper, which was ranked 3rd in the macro-expressions (MaEs) and micro-expressions (MEs) spotting task of the FME challenge 2021. In our earlier work, a deep learning framework based on facial action units (AUs) was proposed to emphasize both local and global features to deal with the MaEs and MEs spotting tasks. In this paper, an advanced Concat-CNN model is proposed to not only utilize facial action units (AU) features, which our previous work proved were more effective in detecting MaEs, but also to fuse the optical flow features to improve the detection performance of MEs. The advanced Concat-CNN proposed in this paper not only considers the intra-features correlation of a single frame but also the inter-features correlation between frames. Further, we devise a new adaptive re-labeling method by labeling the emotional frames with distinctive scores. This method takes into account the dynamic changes in expressions to further improve the overall detection performance. Compared with our earlier work and several existing works, the newly proposed deep learning pipeline is able to achieve a better performance in terms of the overall F1-scores: 0.2623 on CAS(ME)2, 0.2839 on CAS(ME)2-cropped, and 0.3241 on SAMM-LV, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助胖虎采纳,获得10
刚刚
Jason发布了新的文献求助10
刚刚
1秒前
完美世界应助WT采纳,获得10
2秒前
2秒前
2秒前
iik完成签到,获得积分10
4秒前
4秒前
外向太阳完成签到,获得积分10
5秒前
咕咕咕发布了新的文献求助10
5秒前
5秒前
6秒前
医学完成签到,获得积分10
7秒前
7秒前
yue完成签到,获得积分10
8秒前
万能图书馆应助iik采纳,获得10
8秒前
拾七完成签到,获得积分10
10秒前
Paradox发布了新的文献求助10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
忧虑的钻石完成签到,获得积分20
12秒前
14秒前
15秒前
嘿嘿应助1816013153采纳,获得30
15秒前
16秒前
无花果应助齐小明采纳,获得10
17秒前
ding应助genius采纳,获得10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583257
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765654
捐赠科研通 4609324
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498381
关于科研通互助平台的介绍 1467043