The Role of Surface Functional Groups of Iron Oxide, Organic Matter, and Clay Mineral Complexes in Sediments on the Adsorption of Copper Ions

吸附 弗伦德利希方程 有机质 化学 朗缪尔 解吸 无机化学 粘土矿物 环境化学 矿物学 有机化学
作者
Xiao-Long Sun,Yuan Wang,Hongbin Xiong,Fan Wu,Tian-Xin Lv,Yi-Chuan Fang,Hong Xiang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (8): 6711-6711 被引量:3
标识
DOI:10.3390/su15086711
摘要

Heavy metal pollution is a global problem affecting the environment and human health. Sediment is the source sink of heavy metals in water. Under certain circumstances, the migration of heavy metals will cause water pollution. Therefore, it is of great significance to study sediment composition and composite complexes in the migration and transformation of heavy metals. To understand the adsorption mechanisms of composite complexes and improve the theoretical understanding of adsorption in multi-component complex systems, this study explored the characteristics and rules of Cu adsorption to organic–inorganic, inorganic minerals, and iron-oxide–clay complexes in the estuary sediments of the Dianchi Lake. The Langmuir and Freundlich isotherm models were used for Cu adsorption experiments on three complexes to study their adsorption kinetics. X-ray diffraction and Fourier transform infrared spectroscopy characterized the samples before and after adsorption. The relationship between adsorption capacity and sediment composition was analyzed through redundant analyses. The results showed that the Freundlich isothermal model was better than the Langmuir model in describing the adsorption behavior of the adsorbents. The contribution of iron and aluminum oxides to Cu adsorption was more than that of organic matter. The organic–inorganic complexes functional groups involved in copper adsorption are the most, which resulting in a higher adsorption capacity. The organic matter removal (organic degradation in sediment) will reduce the polar functional groups and reduce silicide activity, leading to heavy metal desorption and re-entry into the water body.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Lxxx_7采纳,获得10
刚刚
烟花应助永远少年采纳,获得10
刚刚
meng发布了新的文献求助10
2秒前
科研通AI5应助贪吃的猴子采纳,获得10
4秒前
4秒前
可爱的彩虹完成签到,获得积分10
4秒前
小确幸完成签到,获得积分10
4秒前
彭于晏应助毛毛虫采纳,获得10
5秒前
LilyChen完成签到 ,获得积分10
5秒前
Owen应助Su采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
yyyy关注了科研通微信公众号
7秒前
Jane完成签到 ,获得积分10
8秒前
8秒前
8秒前
kento发布了新的文献求助30
8秒前
Akim应助balzacsun采纳,获得10
9秒前
狼来了aas发布了新的文献求助10
9秒前
10秒前
didi完成签到,获得积分10
10秒前
嘻嘻发布了新的文献求助10
12秒前
冲冲冲完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
善良身影完成签到,获得积分10
15秒前
天天快乐应助郭豪琪采纳,获得10
16秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824