GPMT: Generating practical malicious traffic based on adversarial attacks with little prior knowledge

对抗制 计算机科学 稳健性(进化) 计算机安全 功能(生物学) 人工智能 逃避(道德) 机器学习 免疫系统 生物化学 进化生物学 生物 基因 化学 免疫学
作者
Peishuai Sun,Shuhao Li,Jiang Xie,Hongbo Xu,Zhenyu Cheng,Rong Yang
出处
期刊:Computers & Security [Elsevier]
卷期号:130: 103257-103257 被引量:4
标识
DOI:10.1016/j.cose.2023.103257
摘要

Machine learning (ML) is increasingly used for malicious traffic detection and proven to be effective. However, ML-based detections are at risk of being deceived by adversarial examples. It is critical to carry out adversarial attacks to evaluate the robustness of detections. Some research papers have studied adversarial attacks on ML-based detections, while most of them are in unreal scenarios. It mainly includes two aspects: (i) adversarial attacks gain extra prior knowledge about ML-based models, such as the datasets and features used by the model, which are unlikely to be available in reality; (ii) adversarial attacks generate unpractical examples, which are traffic features or traffic that doesn’t compliance with communication protocol rules. In this paper, we propose an adversarial attack framework GPMT, which generates practical adversarial malicious traffic to deceive the ML-based detection. Compared with previous work, our work mainly has the following advantages: (i) little prior knowledge: we limit the possessed prior knowledge to simulate black-box attacks for real situations; (ii) more adversarial and practical examples: we employ Wasserstein GAN (WGAN) to execute adversarial attacks and design a novel loss function, which generates practical adversarial examples that are more likely to deceive detections. We attack nine ML-based models in the CTU-13 dataset to demonstrate the framework’s validity. Experimental results show that GPMT is more effective and versatile than other methods. For nine models, mean evasion increase rate (EIR) can reach 65.53%, which is 16.48% higher than the best of related methods, DIGFuPAS. In addition, we test other datasets to verify the generality of the framework. The experiment shows that our attack is equally applicable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MikiWu完成签到,获得积分10
1秒前
蒋22完成签到 ,获得积分10
1秒前
zoe完成签到 ,获得积分10
1秒前
1秒前
无花果应助skyangar采纳,获得10
1秒前
科研通AI6应助weiyu_u采纳,获得30
1秒前
hehe完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
慕青应助cuarzn采纳,获得10
2秒前
3秒前
玖玖完成签到,获得积分10
3秒前
惜昭发布了新的文献求助10
3秒前
4秒前
文艺代灵完成签到,获得积分10
4秒前
葛儿完成签到 ,获得积分10
4秒前
5秒前
张某完成签到,获得积分10
5秒前
跳跃太清发布了新的文献求助10
5秒前
5秒前
yc发布了新的文献求助20
5秒前
Pie完成签到,获得积分10
5秒前
6秒前
左丘世立发布了新的文献求助10
6秒前
阿蓉啊完成签到 ,获得积分10
6秒前
TIANEO发布了新的文献求助10
6秒前
小瓶子发布了新的文献求助10
6秒前
蛋烘糕发布了新的文献求助10
6秒前
大虫子完成签到,获得积分10
6秒前
领导范儿应助纯真的柔采纳,获得10
7秒前
Cyrus2022发布了新的文献求助10
7秒前
April完成签到,获得积分10
7秒前
骤雨时晴完成签到 ,获得积分10
7秒前
LYSM应助小鱼鱼采纳,获得20
7秒前
7秒前
hjx完成签到,获得积分10
7秒前
斯文冷亦完成签到 ,获得积分10
7秒前
学术FW完成签到,获得积分10
7秒前
咩咩完成签到,获得积分10
8秒前
Ander完成签到 ,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671