GPMT: Generating practical malicious traffic based on adversarial attacks with little prior knowledge

对抗制 计算机科学 稳健性(进化) 计算机安全 功能(生物学) 人工智能 逃避(道德) 机器学习 免疫系统 生物化学 进化生物学 生物 基因 化学 免疫学
作者
Peishuai Sun,Shuhao Li,Jiang Xie,Hongbo Xu,Zhenyu Cheng,Rong Yang
出处
期刊:Computers & Security [Elsevier]
卷期号:130: 103257-103257 被引量:4
标识
DOI:10.1016/j.cose.2023.103257
摘要

Machine learning (ML) is increasingly used for malicious traffic detection and proven to be effective. However, ML-based detections are at risk of being deceived by adversarial examples. It is critical to carry out adversarial attacks to evaluate the robustness of detections. Some research papers have studied adversarial attacks on ML-based detections, while most of them are in unreal scenarios. It mainly includes two aspects: (i) adversarial attacks gain extra prior knowledge about ML-based models, such as the datasets and features used by the model, which are unlikely to be available in reality; (ii) adversarial attacks generate unpractical examples, which are traffic features or traffic that doesn’t compliance with communication protocol rules. In this paper, we propose an adversarial attack framework GPMT, which generates practical adversarial malicious traffic to deceive the ML-based detection. Compared with previous work, our work mainly has the following advantages: (i) little prior knowledge: we limit the possessed prior knowledge to simulate black-box attacks for real situations; (ii) more adversarial and practical examples: we employ Wasserstein GAN (WGAN) to execute adversarial attacks and design a novel loss function, which generates practical adversarial examples that are more likely to deceive detections. We attack nine ML-based models in the CTU-13 dataset to demonstrate the framework’s validity. Experimental results show that GPMT is more effective and versatile than other methods. For nine models, mean evasion increase rate (EIR) can reach 65.53%, which is 16.48% higher than the best of related methods, DIGFuPAS. In addition, we test other datasets to verify the generality of the framework. The experiment shows that our attack is equally applicable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳发布了新的文献求助10
刚刚
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
实验室牛马完成签到,获得积分10
1秒前
一鱼两吃应助科研通管家采纳,获得10
1秒前
chen完成签到,获得积分10
1秒前
一鱼两吃应助科研通管家采纳,获得10
1秒前
李健的小迷弟应助Hyeri采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
wangying完成签到,获得积分10
1秒前
香蕉静芙完成签到,获得积分10
1秒前
wangyi邮箱完成签到,获得积分10
2秒前
领导范儿应助zl12采纳,获得10
2秒前
PGao应助向乌萨奇学习采纳,获得20
2秒前
2秒前
范雅寒完成签到 ,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
机智333完成签到,获得积分20
2秒前
2秒前
英姑应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
有求必_应发布了新的文献求助10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
搞怪班完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766395
求助须知:如何正确求助?哪些是违规求助? 5565174
关于积分的说明 15412411
捐赠科研通 4900635
什么是DOI,文献DOI怎么找? 2636548
邀请新用户注册赠送积分活动 1584789
关于科研通互助平台的介绍 1540042