GPMT: Generating practical malicious traffic based on adversarial attacks with little prior knowledge

对抗制 计算机科学 稳健性(进化) 计算机安全 功能(生物学) 人工智能 逃避(道德) 机器学习 进化生物学 生物化学 化学 免疫系统 生物 免疫学 基因
作者
Peishuai Sun,Shuhao Li,Jiang Xie,Hongbo Xu,Zhenyu Cheng,Rong Yang
出处
期刊:Computers & Security [Elsevier]
卷期号:130: 103257-103257 被引量:4
标识
DOI:10.1016/j.cose.2023.103257
摘要

Machine learning (ML) is increasingly used for malicious traffic detection and proven to be effective. However, ML-based detections are at risk of being deceived by adversarial examples. It is critical to carry out adversarial attacks to evaluate the robustness of detections. Some research papers have studied adversarial attacks on ML-based detections, while most of them are in unreal scenarios. It mainly includes two aspects: (i) adversarial attacks gain extra prior knowledge about ML-based models, such as the datasets and features used by the model, which are unlikely to be available in reality; (ii) adversarial attacks generate unpractical examples, which are traffic features or traffic that doesn’t compliance with communication protocol rules. In this paper, we propose an adversarial attack framework GPMT, which generates practical adversarial malicious traffic to deceive the ML-based detection. Compared with previous work, our work mainly has the following advantages: (i) little prior knowledge: we limit the possessed prior knowledge to simulate black-box attacks for real situations; (ii) more adversarial and practical examples: we employ Wasserstein GAN (WGAN) to execute adversarial attacks and design a novel loss function, which generates practical adversarial examples that are more likely to deceive detections. We attack nine ML-based models in the CTU-13 dataset to demonstrate the framework’s validity. Experimental results show that GPMT is more effective and versatile than other methods. For nine models, mean evasion increase rate (EIR) can reach 65.53%, which is 16.48% higher than the best of related methods, DIGFuPAS. In addition, we test other datasets to verify the generality of the framework. The experiment shows that our attack is equally applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学呀学发布了新的文献求助10
刚刚
科目三应助活泼的巨人采纳,获得10
刚刚
1秒前
NexusExplorer应助wzwz采纳,获得10
1秒前
正直草丛发布了新的文献求助10
1秒前
清客发布了新的文献求助10
1秒前
2秒前
搜集达人应助文静采纳,获得10
3秒前
小可爱发布了新的文献求助10
3秒前
3秒前
彭于晏应助波妞采纳,获得10
4秒前
王俊完成签到,获得积分10
4秒前
希望天下0贩的0应助xiaoxi采纳,获得10
4秒前
神的女人发布了新的文献求助10
5秒前
看文献发布了新的文献求助10
5秒前
5秒前
学术小白发布了新的文献求助10
5秒前
yyr完成签到,获得积分10
5秒前
清脆百褶裙完成签到,获得积分10
6秒前
6秒前
蓝秋完成签到,获得积分10
7秒前
ExtroGod发布了新的文献求助10
7秒前
AA发布了新的文献求助10
7秒前
巨人肩上发布了新的文献求助10
8秒前
小张20220913应助石头采纳,获得40
8秒前
xiaoran发布了新的文献求助10
8秒前
浊醪自有妙理完成签到,获得积分10
8秒前
抱住仙人球应助几又采纳,获得10
9秒前
Orange应助洛洛采纳,获得10
9秒前
9秒前
美丽的爆米花完成签到 ,获得积分10
10秒前
唯有发布了新的文献求助30
11秒前
12秒前
冬瓜发布了新的文献求助10
13秒前
yutou完成签到,获得积分10
13秒前
lkq完成签到,获得积分20
13秒前
文静发布了新的文献求助10
17秒前
17秒前
英俊的铭应助翾喾鷇采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101389
求助须知:如何正确求助?哪些是违规求助? 2752795
关于积分的说明 7621022
捐赠科研通 2405111
什么是DOI,文献DOI怎么找? 1276127
科研通“疑难数据库(出版商)”最低求助积分说明 616705
版权声明 599058