蛋白质组学
生物标志物
生物标志物发现
肽
工作流程
计算生物学
选择(遗传算法)
计算机科学
签名(拓扑)
化学
色谱法
生物
人工智能
数学
生物化学
数据库
基因
几何学
作者
Xiazi Qiu,Kenneth J. Ruterbories,Qin Ji,Gary J. Jenkins
出处
期刊:Bioanalysis
[Newlands Press Ltd]
日期:2023-03-01
卷期号:15 (5): 295-300
被引量:3
标识
DOI:10.4155/bio-2022-0241
摘要
In contrast to quantification of biotherapeutics, endogenous protein biomarker and target quantification using LC–MS based targeted proteomics can require a much more stringent and time-consuming tryptic signature peptide selection for each specific application. While some general criteria exist, there are no tools currently available in the public domain to predict the ionization efficiency for a given signature peptide candidate. Lack of knowledge of the ionization efficiencies forces investigators to choose peptides blindly, thus hindering method development for low abundant protein quantification. Here, the authors propose a tryptic signature peptide selection workflow to achieve a more efficient method development and to improve success rates in signature peptide selection for low abundant endogenous target and protein biomarker quantification.
科研通智能强力驱动
Strongly Powered by AbleSci AI