Weak Fault Feature Extraction Method of Rolling Bearings Based on MVO-MOMEDA Under Strong Noise Interference

粒子群优化 特征提取 算法 熵(时间箭头) 计算机科学 支持向量机 控制理论(社会学) 人工智能 模式识别(心理学) 工程类 量子力学 物理 控制(管理)
作者
Zhongliang Lv,Linhao Peng,Yujiang Cao,Lin Yang,Linfeng Li,Chuande Zhou
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (14): 15732-15740 被引量:30
标识
DOI:10.1109/jsen.2023.3277516
摘要

Aiming at the problem that the weak information of rolling bearing fault features in a strong background noise environment, and the filter length and fault period of important parameters in multipoint optimal minimum entropy deconvolution algorithm (MOMEDA) depend on human experience selection. This article proposes a rolling bearing weak fault feature extraction method based on multiverse optimization algorithm (MVO) optimized MOMEDA under strong noise interference. First, establish a new index of multiobjective optimization, the peak factor of envelope spectrum is taken as the fitness value, and use the powerful global search ability of MVO to select the best parameter combination of the MOMEDA method adaptively. Second, the weak fault signal is enhanced by the MOMEDA algorithm. Finally, the enhanced signal is decomposed using the ensemble empirical modal decomposition (EEMD), and the fuzzy entropy feature set is constructed, which is input to the support vector machine (SVM) for classification and identification. To verify the feasibility of the method in this article, the rolling bearing data from Case Western Reserve University and the drivetrain dynamics simulator (DDS) testbed were selected for comparison experiments. The experimental results show that compared with minimum entropy deconvolution (MED), maximum correlation kurtosis deconvolution (MCKD), and MOMEDA, the classification accuracy of the proposed method increased by 5.36%, 16.82%, and 13.45%, respectively. Compared with particle swarm optimization algorithm (PSO) and fireworks algorithm (FWA), the MVO algorithm has faster convergence speed and stronger stability when optimizing MOMEDA problems. Even under strong background noise, it still has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助木子采纳,获得10
刚刚
刚刚
现代的十八完成签到,获得积分10
刚刚
刚刚
智慧爷爷完成签到,获得积分10
1秒前
1秒前
星辰大海应助忧心的惜天采纳,获得30
1秒前
vooov发布了新的文献求助30
1秒前
乔啡完成签到,获得积分10
1秒前
爆米花应助洋洋呀采纳,获得10
1秒前
2秒前
脑洞疼应助cherish采纳,获得10
2秒前
惊鸿H完成签到 ,获得积分10
3秒前
小波发布了新的文献求助30
3秒前
Ava应助俗人采纳,获得10
3秒前
3秒前
嘿嘿完成签到,获得积分10
4秒前
三一完成签到,获得积分10
4秒前
zlxxianer发布了新的文献求助10
4秒前
小茉莉发布了新的文献求助10
4秒前
4秒前
酷波er应助黄浦江采纳,获得10
5秒前
hgfchg完成签到,获得积分10
5秒前
创新完成签到,获得积分10
5秒前
5秒前
5秒前
宁无剑完成签到 ,获得积分10
5秒前
科研通AI6应助answer采纳,获得10
6秒前
6秒前
6秒前
邹雄辉完成签到,获得积分10
6秒前
大个应助赫连烙采纳,获得10
6秒前
cc完成签到,获得积分10
6秒前
Orange应助鲁珊珊采纳,获得10
7秒前
宣以晴发布了新的文献求助10
7秒前
浮游应助sfwrbh采纳,获得10
8秒前
8秒前
lyy发布了新的文献求助30
9秒前
9秒前
satori完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603