Weak Fault Feature Extraction Method of Rolling Bearings Based on MVO-MOMEDA Under Strong Noise Interference

粒子群优化 特征提取 算法 熵(时间箭头) 计算机科学 支持向量机 控制理论(社会学) 人工智能 模式识别(心理学) 工程类 量子力学 物理 控制(管理)
作者
Zhongliang Lv,Linhao Peng,Yujiang Cao,Lin Yang,Linfeng Li,Chuande Zhou
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (14): 15732-15740 被引量:6
标识
DOI:10.1109/jsen.2023.3277516
摘要

Aiming at the problem that the weak information of rolling bearing fault features in a strong background noise environment, and the filter length and fault period of important parameters in multipoint optimal minimum entropy deconvolution algorithm (MOMEDA) depend on human experience selection. This article proposes a rolling bearing weak fault feature extraction method based on multiverse optimization algorithm (MVO) optimized MOMEDA under strong noise interference. First, establish a new index of multiobjective optimization, the peak factor of envelope spectrum is taken as the fitness value, and use the powerful global search ability of MVO to select the best parameter combination of the MOMEDA method adaptively. Second, the weak fault signal is enhanced by the MOMEDA algorithm. Finally, the enhanced signal is decomposed using the ensemble empirical modal decomposition (EEMD), and the fuzzy entropy feature set is constructed, which is input to the support vector machine (SVM) for classification and identification. To verify the feasibility of the method in this article, the rolling bearing data from Case Western Reserve University and the drivetrain dynamics simulator (DDS) testbed were selected for comparison experiments. The experimental results show that compared with minimum entropy deconvolution (MED), maximum correlation kurtosis deconvolution (MCKD), and MOMEDA, the classification accuracy of the proposed method increased by 5.36%, 16.82%, and 13.45%, respectively. Compared with particle swarm optimization algorithm (PSO) and fireworks algorithm (FWA), the MVO algorithm has faster convergence speed and stronger stability when optimizing MOMEDA problems. Even under strong background noise, it still has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ko_echo完成签到,获得积分10
刚刚
刚刚
加油nyd发布了新的文献求助10
1秒前
1秒前
小兵发布了新的文献求助10
1秒前
1秒前
chengxiping发布了新的文献求助10
2秒前
2秒前
yshog发布了新的文献求助10
2秒前
熊猫海完成签到,获得积分10
2秒前
3秒前
蓝莓完成签到,获得积分10
4秒前
徐安琪完成签到,获得积分10
4秒前
4秒前
Hilda007应助麻薯头头采纳,获得10
5秒前
科研通AI2S应助麻薯头头采纳,获得10
5秒前
5秒前
6秒前
zyun发布了新的文献求助30
6秒前
7秒前
飞翔的小鸟完成签到 ,获得积分10
7秒前
7秒前
笑看风云完成签到,获得积分10
8秒前
9秒前
error完成签到 ,获得积分10
10秒前
苏苏发布了新的文献求助10
10秒前
rose发布了新的文献求助30
10秒前
jou发布了新的文献求助10
10秒前
乐观小之应助夏傥采纳,获得10
12秒前
lzy完成签到,获得积分10
12秒前
12秒前
不倦应助超级无敌幸运星采纳,获得10
13秒前
故意不上钩的鱼应助小兵采纳,获得10
13秒前
小青椒应助Mesting采纳,获得30
13秒前
14秒前
14秒前
叮叮当当应助善良的发带采纳,获得20
14秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403