Weak Fault Feature Extraction Method of Rolling Bearings Based on MVO-MOMEDA Under Strong Noise Interference

粒子群优化 特征提取 算法 熵(时间箭头) 计算机科学 支持向量机 控制理论(社会学) 人工智能 模式识别(心理学) 工程类 量子力学 物理 控制(管理)
作者
Zhongliang Lv,Linhao Peng,Yujiang Cao,Lin Yang,Linfeng Li,Chuande Zhou
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (14): 15732-15740 被引量:6
标识
DOI:10.1109/jsen.2023.3277516
摘要

Aiming at the problem that the weak information of rolling bearing fault features in a strong background noise environment, and the filter length and fault period of important parameters in multipoint optimal minimum entropy deconvolution algorithm (MOMEDA) depend on human experience selection. This article proposes a rolling bearing weak fault feature extraction method based on multiverse optimization algorithm (MVO) optimized MOMEDA under strong noise interference. First, establish a new index of multiobjective optimization, the peak factor of envelope spectrum is taken as the fitness value, and use the powerful global search ability of MVO to select the best parameter combination of the MOMEDA method adaptively. Second, the weak fault signal is enhanced by the MOMEDA algorithm. Finally, the enhanced signal is decomposed using the ensemble empirical modal decomposition (EEMD), and the fuzzy entropy feature set is constructed, which is input to the support vector machine (SVM) for classification and identification. To verify the feasibility of the method in this article, the rolling bearing data from Case Western Reserve University and the drivetrain dynamics simulator (DDS) testbed were selected for comparison experiments. The experimental results show that compared with minimum entropy deconvolution (MED), maximum correlation kurtosis deconvolution (MCKD), and MOMEDA, the classification accuracy of the proposed method increased by 5.36%, 16.82%, and 13.45%, respectively. Compared with particle swarm optimization algorithm (PSO) and fireworks algorithm (FWA), the MVO algorithm has faster convergence speed and stronger stability when optimizing MOMEDA problems. Even under strong background noise, it still has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焦焦完成签到 ,获得积分10
2秒前
香蕉觅云应助斯文问丝采纳,获得10
2秒前
2秒前
做大做强发布了新的文献求助30
3秒前
okjiujiu发布了新的文献求助10
4秒前
皇帝的床帘应助YOKO采纳,获得10
4秒前
韵希发布了新的文献求助10
5秒前
LFY完成签到 ,获得积分10
8秒前
8秒前
copy发布了新的文献求助10
8秒前
范不吃完成签到,获得积分10
9秒前
9秒前
9秒前
丑123完成签到,获得积分10
9秒前
Peng发布了新的文献求助10
10秒前
QQQ发布了新的文献求助10
12秒前
做大做强完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
yyyt完成签到,获得积分10
15秒前
快乐的鱼完成签到,获得积分10
16秒前
16秒前
yijiaobaijing发布了新的文献求助10
17秒前
大雄发布了新的文献求助10
17秒前
大火炉发布了新的文献求助10
17秒前
QQQ完成签到,获得积分10
18秒前
燕子要先飞完成签到,获得积分10
23秒前
情怀应助ww采纳,获得10
24秒前
搜集达人应助Ting222采纳,获得10
24秒前
彭于晏应助快乐的鱼采纳,获得10
24秒前
yijiaobaijing完成签到,获得积分20
25秒前
25秒前
飞快的万声完成签到,获得积分10
25秒前
超帅凡阳完成签到,获得积分10
27秒前
111应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112