Weak Fault Feature Extraction Method of Rolling Bearings Based on MVO-MOMEDA Under Strong Noise Interference

粒子群优化 特征提取 算法 熵(时间箭头) 计算机科学 支持向量机 控制理论(社会学) 人工智能 模式识别(心理学) 工程类 量子力学 物理 控制(管理)
作者
Zhongliang Lv,Linhao Peng,Yujiang Cao,Lin Yang,Linfeng Li,Chuande Zhou
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (14): 15732-15740 被引量:6
标识
DOI:10.1109/jsen.2023.3277516
摘要

Aiming at the problem that the weak information of rolling bearing fault features in a strong background noise environment, and the filter length and fault period of important parameters in multipoint optimal minimum entropy deconvolution algorithm (MOMEDA) depend on human experience selection. This article proposes a rolling bearing weak fault feature extraction method based on multiverse optimization algorithm (MVO) optimized MOMEDA under strong noise interference. First, establish a new index of multiobjective optimization, the peak factor of envelope spectrum is taken as the fitness value, and use the powerful global search ability of MVO to select the best parameter combination of the MOMEDA method adaptively. Second, the weak fault signal is enhanced by the MOMEDA algorithm. Finally, the enhanced signal is decomposed using the ensemble empirical modal decomposition (EEMD), and the fuzzy entropy feature set is constructed, which is input to the support vector machine (SVM) for classification and identification. To verify the feasibility of the method in this article, the rolling bearing data from Case Western Reserve University and the drivetrain dynamics simulator (DDS) testbed were selected for comparison experiments. The experimental results show that compared with minimum entropy deconvolution (MED), maximum correlation kurtosis deconvolution (MCKD), and MOMEDA, the classification accuracy of the proposed method increased by 5.36%, 16.82%, and 13.45%, respectively. Compared with particle swarm optimization algorithm (PSO) and fireworks algorithm (FWA), the MVO algorithm has faster convergence speed and stronger stability when optimizing MOMEDA problems. Even under strong background noise, it still has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123cxj发布了新的文献求助10
1秒前
星辰大海应助红红采纳,获得10
1秒前
sweetbearm应助小周采纳,获得10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
3秒前
HonamC完成签到,获得积分10
4秒前
十三十四十五完成签到,获得积分10
5秒前
潇洒的问夏完成签到 ,获得积分10
7秒前
无声瀑布完成签到,获得积分10
7秒前
Bingtao_Lian完成签到 ,获得积分10
8秒前
小布丁完成签到 ,获得积分10
8秒前
竹筏过海应助季生采纳,获得30
9秒前
10秒前
buno应助22采纳,获得10
11秒前
赘婿应助TT采纳,获得10
12秒前
12秒前
12秒前
13秒前
Jenny应助赖道之采纳,获得10
15秒前
依古比古完成签到 ,获得积分10
17秒前
汎影发布了新的文献求助10
17秒前
小二完成签到,获得积分10
17秒前
18秒前
20秒前
顾矜应助长情洙采纳,获得10
20秒前
monere发布了新的文献求助30
20秒前
Xiaoxiao应助汉关采纳,获得10
22秒前
22秒前
汎影完成签到,获得积分10
23秒前
24秒前
Chen发布了新的文献求助10
26秒前
WW完成签到,获得积分10
26秒前
28秒前
hyjcnhyj完成签到,获得积分10
29秒前
英姑应助赖道之采纳,获得10
30秒前
32秒前
研友_LXdbaL发布了新的文献求助30
32秒前
思源应助单薄新烟采纳,获得10
33秒前
33秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808