Weak Fault Feature Extraction Method of Rolling Bearings Based on MVO-MOMEDA Under Strong Noise Interference

粒子群优化 特征提取 算法 熵(时间箭头) 计算机科学 支持向量机 控制理论(社会学) 人工智能 模式识别(心理学) 工程类 量子力学 物理 控制(管理)
作者
Zhongliang Lv,Linhao Peng,Yujiang Cao,Lin Yang,Linfeng Li,Chuande Zhou
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (14): 15732-15740 被引量:6
标识
DOI:10.1109/jsen.2023.3277516
摘要

Aiming at the problem that the weak information of rolling bearing fault features in a strong background noise environment, and the filter length and fault period of important parameters in multipoint optimal minimum entropy deconvolution algorithm (MOMEDA) depend on human experience selection. This article proposes a rolling bearing weak fault feature extraction method based on multiverse optimization algorithm (MVO) optimized MOMEDA under strong noise interference. First, establish a new index of multiobjective optimization, the peak factor of envelope spectrum is taken as the fitness value, and use the powerful global search ability of MVO to select the best parameter combination of the MOMEDA method adaptively. Second, the weak fault signal is enhanced by the MOMEDA algorithm. Finally, the enhanced signal is decomposed using the ensemble empirical modal decomposition (EEMD), and the fuzzy entropy feature set is constructed, which is input to the support vector machine (SVM) for classification and identification. To verify the feasibility of the method in this article, the rolling bearing data from Case Western Reserve University and the drivetrain dynamics simulator (DDS) testbed were selected for comparison experiments. The experimental results show that compared with minimum entropy deconvolution (MED), maximum correlation kurtosis deconvolution (MCKD), and MOMEDA, the classification accuracy of the proposed method increased by 5.36%, 16.82%, and 13.45%, respectively. Compared with particle swarm optimization algorithm (PSO) and fireworks algorithm (FWA), the MVO algorithm has faster convergence speed and stronger stability when optimizing MOMEDA problems. Even under strong background noise, it still has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LEMONS应助sunaq采纳,获得10
1秒前
somin应助vadfdfb采纳,获得10
1秒前
啦啦啦发布了新的文献求助30
2秒前
Jasper应助哈ha采纳,获得10
2秒前
2秒前
binbinbin发布了新的文献求助10
2秒前
3秒前
科研小哥发布了新的文献求助10
4秒前
干净千青完成签到,获得积分10
4秒前
5秒前
高瞻关注了科研通微信公众号
5秒前
木水水关注了科研通微信公众号
6秒前
liuzengzhang666完成签到,获得积分10
7秒前
汉堡包应助乔烨磊采纳,获得10
8秒前
NexusExplorer应助不安白易采纳,获得10
8秒前
南瓜汤完成签到,获得积分10
9秒前
缓慢的初南完成签到,获得积分20
9秒前
9秒前
策略发布了新的文献求助10
10秒前
周em12_完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
南瓜汤发布了新的文献求助10
12秒前
12秒前
13秒前
你猜啊发布了新的文献求助10
13秒前
欢快的芹菜完成签到,获得积分10
14秒前
Hello应助调皮的海之采纳,获得10
14秒前
14秒前
米娅完成签到,获得积分10
14秒前
15秒前
andrele应助666采纳,获得10
15秒前
爱听歌老1完成签到,获得积分10
16秒前
田様应助干净的问寒采纳,获得10
16秒前
扎心发布了新的文献求助10
16秒前
99完成签到,获得积分10
16秒前
林佳一完成签到,获得积分10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583