Deep Learning Versus Neurologists: Functional Outcome Prediction in LVO Stroke Patients Undergoing Mechanical Thrombectomy

医学 改良兰金量表 接收机工作特性 冲程(发动机) 磁共振成像 大脑中动脉 人工智能 放射科 内科学 缺血性中风 缺血 计算机科学 机械工程 工程类
作者
Lisa Herzog,Lucas Kook,Janne Hamann,Christoph Globas,Mirjam R. Heldner,David Seiffge,Kateryna Antonenko,Tomas Dobrocky,Leonidas Panos,Johannes Kaesmacher,Urs Fischer,Jan Gralla,Marcel Arnold,Roland Wiest,Andreas R. Luft,Beate Sick,Susanne Wegener
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:54 (7): 1761-1769 被引量:19
标识
DOI:10.1161/strokeaha.123.042496
摘要

Despite evolving treatments, functional recovery in patients with large vessel occlusion stroke remains variable and outcome prediction challenging. Can we improve estimation of functional outcome with interpretable deep learning models using clinical and magnetic resonance imaging data?In this observational study, we collected data of 222 patients with middle cerebral artery M1 segment occlusion who received mechanical thrombectomy. In a 5-fold cross validation, we evaluated interpretable deep learning models for predicting functional outcome in terms of modified Rankin scale at 3 months using clinical variables, diffusion weighted imaging and perfusion weighted imaging, and a combination thereof. Based on 50 test patients, we compared model performances to those of 5 experienced stroke neurologists. Prediction performance for ordinal (modified Rankin scale score, 0-6) and binary (modified Rankin scale score, 0-2 versus 3-6) functional outcome was assessed using discrimination and calibration measures like area under the receiver operating characteristic curve and accuracy (percentage of correctly classified patients).In the cross validation, the model based on clinical variables and diffusion weighted imaging achieved the highest binary prediction performance (area under the receiver operating characteristic curve, 0.766 [0.727-0.803]). Performance of models using clinical variables or diffusion weighted imaging only was lower. Adding perfusion weighted imaging did not improve outcome prediction. On the test set of 50 patients, binary prediction performance between model (accuracy, 60% [55.4%-64.4%]) and neurologists (accuracy, 60% [55.8%-64.21%]) was similar when using clinical data. However, models significantly outperformed neurologists when imaging data were provided, alone or in combination with clinical variables (accuracy, 72% [67.8%-76%] versus 64% [59.8%-68.4%] with clinical and imaging data). Prediction performance of neurologists with comparable experience varied strongly.We hypothesize that early prediction of functional outcome in large vessel occlusion stroke patients may be significantly improved if neurologists are supported by interpretable deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱香槟发布了新的文献求助20
2秒前
木木发布了新的文献求助10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
袁睿韬应助科研通管家采纳,获得10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得50
3秒前
大脑袋应助科研通管家采纳,获得20
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
囡囝囿团发布了新的文献求助10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得20
4秒前
orixero应助科研通管家采纳,获得10
4秒前
大脑袋应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
ED应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Akim应助科研通管家采纳,获得30
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
冷酷的夜关注了科研通微信公众号
6秒前
626发布了新的文献求助10
6秒前
Res_M发布了新的文献求助10
7秒前
9秒前
娃哈哈发布了新的文献求助10
9秒前
10秒前
香蕉觅云应助Hannah采纳,获得10
13秒前
aaaaaa发布了新的文献求助10
14秒前
香蕉觅云应助001采纳,获得10
14秒前
15秒前
小可爱完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432