Deep Learning Versus Neurologists: Functional Outcome Prediction in LVO Stroke Patients Undergoing Mechanical Thrombectomy

医学 改良兰金量表 接收机工作特性 冲程(发动机) 磁共振成像 大脑中动脉 人工智能 放射科 内科学 缺血性中风 缺血 计算机科学 机械工程 工程类
作者
Lisa Herzog,Lucas Kook,Janne Hamann,Christoph Globas,Mirjam R. Heldner,David Seiffge,Kateryna Antonenko,Tomas Dobrocky,Leonidas Panos,Johannes Kaesmacher,Urs Fischer,Jan Gralla,Marcel Arnold,Roland Wiest,Andreas R. Luft,Beate Sick,Susanne Wegener
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (7): 1761-1769 被引量:10
标识
DOI:10.1161/strokeaha.123.042496
摘要

BACKGROUND: Despite evolving treatments, functional recovery in patients with large vessel occlusion stroke remains variable and outcome prediction challenging. Can we improve estimation of functional outcome with interpretable deep learning models using clinical and magnetic resonance imaging data? METHODS: In this observational study, we collected data of 222 patients with middle cerebral artery M1 segment occlusion who received mechanical thrombectomy. In a 5-fold cross validation, we evaluated interpretable deep learning models for predicting functional outcome in terms of modified Rankin scale at 3 months using clinical variables, diffusion weighted imaging and perfusion weighted imaging, and a combination thereof. Based on 50 test patients, we compared model performances to those of 5 experienced stroke neurologists. Prediction performance for ordinal (modified Rankin scale score, 0–6) and binary (modified Rankin scale score, 0–2 versus 3–6) functional outcome was assessed using discrimination and calibration measures like area under the receiver operating characteristic curve and accuracy (percentage of correctly classified patients). RESULTS: In the cross validation, the model based on clinical variables and diffusion weighted imaging achieved the highest binary prediction performance (area under the receiver operating characteristic curve, 0.766 [0.727–0.803]). Performance of models using clinical variables or diffusion weighted imaging only was lower. Adding perfusion weighted imaging did not improve outcome prediction. On the test set of 50 patients, binary prediction performance between model (accuracy, 60% [55.4%–64.4%]) and neurologists (accuracy, 60% [55.8%–64.21%]) was similar when using clinical data. However, models significantly outperformed neurologists when imaging data were provided, alone or in combination with clinical variables (accuracy, 72% [67.8%–76%] versus 64% [59.8%–68.4%] with clinical and imaging data). Prediction performance of neurologists with comparable experience varied strongly. CONCLUSIONS: We hypothesize that early prediction of functional outcome in large vessel occlusion stroke patients may be significantly improved if neurologists are supported by interpretable deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助甜甜的傲柏采纳,获得10
刚刚
dwls完成签到,获得积分10
2秒前
科研通AI2S应助梓ccc采纳,获得30
3秒前
深情安青应助南方姑娘采纳,获得10
4秒前
沐紫心完成签到 ,获得积分10
4秒前
cuihl123完成签到,获得积分20
4秒前
周凡淇发布了新的文献求助10
4秒前
5秒前
glacierflame发布了新的文献求助10
5秒前
Lumos完成签到 ,获得积分10
5秒前
ding应助雪球采纳,获得10
5秒前
WYF完成签到,获得积分20
6秒前
6秒前
乐乐应助躺平girl采纳,获得10
7秒前
大力黑米完成签到 ,获得积分10
8秒前
调皮黑猫完成签到,获得积分10
9秒前
10秒前
10秒前
cuihl123发布了新的文献求助10
10秒前
天天快乐应助哭泣老三采纳,获得10
11秒前
HEIKU应助lily采纳,获得20
12秒前
YYY完成签到,获得积分10
14秒前
14秒前
33333发布了新的文献求助10
15秒前
16秒前
infinite发布了新的文献求助10
16秒前
刘一三完成签到 ,获得积分10
16秒前
17秒前
Jasper应助开心寻凝采纳,获得10
17秒前
积极的尔白完成签到 ,获得积分10
17秒前
17秒前
lyt完成签到,获得积分10
18秒前
curtisness完成签到,获得积分0
19秒前
fishss完成签到,获得积分10
19秒前
默默的素阴完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
啾咪发布了新的文献求助10
20秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655