Explainable machine learning framework to predict personalized physiological aging

机器学习 计算机科学 计算生物学 生物 生物信息学
作者
David Bernard,Emmanuel Doumard,Isabelle Ader,Philippe Kémoun,Jean‐Christophe Pagès,Anne Galinier,Sylvain Cussat‐Blanc,Félix Furger,Luigi Ferrucci,Julien Aligon,Cyrille Delpierre,Luc Pénicaud,Paul Monsarrat,Louis Casteilla
出处
期刊:Aging Cell [Wiley]
卷期号:22 (8) 被引量:45
标识
DOI:10.1111/acel.13872
摘要

Abstract Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖寻琴发布了新的文献求助10
刚刚
愤怒的水壶完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
林深完成签到,获得积分10
1秒前
蚌壳发布了新的文献求助20
1秒前
2秒前
9527完成签到,获得积分10
2秒前
高大绝义发布了新的文献求助10
2秒前
Uranus发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
3秒前
bkagyin应助vv采纳,获得10
3秒前
顺心凝海完成签到,获得积分10
3秒前
Azheng完成签到 ,获得积分10
3秒前
冰冰完成签到,获得积分10
3秒前
3秒前
陈佳琦完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
机灵哈密瓜完成签到,获得积分10
4秒前
kkkkkkkk发布了新的文献求助10
4秒前
4秒前
元宝是只傻猫完成签到,获得积分10
4秒前
5秒前
万能图书馆应助ceeray23采纳,获得20
5秒前
WYM完成签到,获得积分10
5秒前
science完成签到,获得积分10
5秒前
小猫nika完成签到,获得积分10
5秒前
今后应助温乘云采纳,获得10
6秒前
CC完成签到,获得积分10
6秒前
JayceHe完成签到,获得积分10
6秒前
猫猫叽丫丫完成签到,获得积分10
6秒前
Owen应助书山有路勤为劲采纳,获得10
6秒前
6秒前
Jasper应助yajun采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297