Explainable machine learning framework to predict personalized physiological aging

机器学习 计算机科学 计算生物学 生物 生物信息学
作者
David Bernard,Emmanuel Doumard,Isabelle Ader,Philippe Kémoun,Jean‐Christophe Pagès,Anne Galinier,Sylvain Cussat‐Blanc,Félix Furger,Luigi Ferrucci,Julien Aligon,Cyrille Delpierre,Luc Pénicaud,Paul Monsarrat,Louis Casteilla
出处
期刊:Aging Cell [Wiley]
卷期号:22 (8) 被引量:9
标识
DOI:10.1111/acel.13872
摘要

Abstract Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无翼发布了新的文献求助10
1秒前
Jasper应助尊敬的绿柳采纳,获得10
2秒前
华仔应助墓轩采纳,获得10
3秒前
书南发布了新的文献求助10
3秒前
小秋发布了新的文献求助10
3秒前
3秒前
青栀完成签到,获得积分10
4秒前
忆往昔完成签到,获得积分10
5秒前
5秒前
文光完成签到,获得积分10
6秒前
lili完成签到,获得积分10
6秒前
酷炫的乐驹完成签到,获得积分10
7秒前
8秒前
嘉心糖应助加菲丰丰采纳,获得20
8秒前
科研通AI2S应助wcy采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
所所应助Mimi采纳,获得10
9秒前
丘比特应助无翼采纳,获得10
10秒前
SPark发布了新的文献求助10
10秒前
丘比特应助苏苏采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
Akim应助小秋采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
香蕉觅云应助恐怖故事采纳,获得10
11秒前
毛豆应助科研通管家采纳,获得10
11秒前
11秒前
不将就1345应助科研通管家采纳,获得30
11秒前
可靠幼旋应助科研通管家采纳,获得10
11秒前
12秒前
毛豆应助科研通管家采纳,获得10
12秒前
prosperp应助科研通管家采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186