自编码
实现(概率)
维数(图论)
计算机科学
空格(标点符号)
人工智能
代表(政治)
参数化(大气建模)
数学
深度学习
统计
量子力学
辐射传输
政治
操作系统
物理
法学
纯数学
政治学
作者
Taisuke Kobayashi,Ryoma Watanuki
标识
DOI:10.1080/01691864.2023.2221715
摘要
Extraction of low-dimensional latent space from high-dimensional observation data is essential to construct a real-time robot controller with a world model on the extracted latent space. However, there is no established method for tuning the dimension size of the latent space automatically, suffering from finding the necessary and sufficient dimension size, i.e. the minimal realization of the world model. In this study, we analyze and improve Tsallis-based variational autoencoder (q-VAE), and reveal that, under an appropriate configuration, it always facilitates making the latent space sparse. Even if the dimension size of the pre-specified latent space is redundant compared to the minimal realization, this sparsification collapses unnecessary dimensions, allowing for easy removal of them. We experimentally verified the benefits of the sparsification by the proposed method that it can easily find the necessary and sufficient six dimensions for a reaching task with a mobile manipulator that requires a six-dimensional state space. Moreover, by planning with such a minimal-realization world model learned in the extracted dimensions, the proposed method was able to exert a more optimal action sequence in real-time, reducing the reaching accomplishment time by around 20 %. The attached video is uploaded on youtube: https://youtu.be/-QjITrnxaRs
科研通智能强力驱动
Strongly Powered by AbleSci AI