电容去离子
普鲁士蓝
电化学
阳极
材料科学
纳米颗粒
锂(药物)
插层(化学)
阴极
氧化还原
化学工程
活性炭
电极
无机化学
化学
纳米技术
吸附
医学
有机化学
物理化学
内分泌学
工程类
作者
Muruganantham Rethinasabapathy,Gokul Bhaskaran,Seung‐Kyu Hwang,Taegong Ryu,Yun Suk Huh
出处
期刊:Chemosphere
[Elsevier]
日期:2023-06-16
卷期号:336: 139256-139256
被引量:14
标识
DOI:10.1016/j.chemosphere.2023.139256
摘要
Global demand for lithium (Li) resources has dramatically increased due to the demand for clean energy, especially the large-scale usage of lithium-ion batteries in electric vehicles. Membrane capacitive deionization (MCDI) is an energy and cost-efficient electrochemical technology at the forefront of Li extraction from natural resources such as brine and seawater. In this study, we designed high-performance MCDI electrodes by compositing Li+ intercalation redox-active Prussian blue (PB) nanoparticles with highly conductive porous activated carbon (AC) matrix for the selective extraction of Li+. Herein, we prepared a series of PB-anchored AC composites (AC/PB) containing different percentages (20%, 40%, 60%, and 80%) of PB by weight (AC/PB-20%, AC/PB-40%, AC/PB-60%, and AC/PB-80%, respectively). The AC/PB-20% electrode with uniformly anchored PB nanoparticles over AC matrix enhanced the number of active sites for electrochemical reaction, promoted electron/ion transport paths, and facilitated abundant channels for the reversible insertion/de-insertion of Li+ by PB, which resulted in stronger current response, higher specific capacitance (159 F g-1), and reduced interfacial resistance for the transport of Li+ and electrons. An asymmetric MCDI cell assembled with AC/PB-20% as cathode and AC as anode (AC//AC-PB20%) displayed outstanding Li+ electrosorption capacity of 24.42 mg g-1 and a mean salt removal rate of 2.71 mg g min-1 in 5 mM LiCl aqueous solution at 1.4 V with high cyclic stability. After 50 electrosorption-desorption cycles, 95.11% of the initial electrosorption capacity was retained, reflecting its good electrochemical stability. The described strategy demonstrates the potential benefits of compositing intercalation pseudo capacitive redox material with Faradaic materials for the design of advanced MCDI electrodes for real-life Li+ extraction applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI