High-Order Correlation-Guided Slide-Level Histology Retrieval With Self-Supervised Hashing

计算机科学 散列函数 成对比较 模式识别(心理学) 人工智能 情报检索 计算机安全
作者
Shengrui Li,Yining Zhao,Jun Zhang,Ting Yu,Ji Zhang,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11008-11023 被引量:5
标识
DOI:10.1109/tpami.2023.3269810
摘要

Histopathological Whole Slide Images (WSIs) play a crucial role in cancer diagnosis. It is of significant importance for pathologists to search for images sharing similar content with the query WSI, especially in the case-based diagnosis. While slide-level retrieval could be more intuitive and practical in clinical applications, most methods are designed for patch-level retrieval. A few recently unsupervised slide-level methods only focus on integrating patch features directly, without perceiving slide-level information, and thus severely limits the performance of WSI retrieval. To tackle the issue, we propose a High-Order Correlation-Guided Self-Supervised Hashing-Encoding Retrieval (HSHR) method. Specifically, we train an attention-based hash encoder with slide-level representation in a self-supervised manner, enabling it to generate more representative slide-level hash codes of cluster centers and assign weights for each. These optimized and weighted codes are leveraged to establish a similarity-based hypergraph, in which a hypergraph-guided retrieval module is adopted to explore high-order correlations in the multi-pairwise manifold to conduct WSI retrieval. Extensive experiments on multiple TCGA datasets with over 24,000 WSIs spanning 30 cancer subtypes demonstrate that HSHR achieves state-of-the-art performance compared with other unsupervised histology WSI retrieval methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
keyanxiaoyan发布了新的文献求助10
4秒前
NexusExplorer应助金海采纳,获得10
4秒前
粗犷的凌兰完成签到,获得积分10
5秒前
科研通AI5应助maomaomao采纳,获得10
6秒前
6秒前
sleep君发布了新的文献求助10
6秒前
椰汁糕发布了新的文献求助10
7秒前
7秒前
7秒前
沉默的宛筠应助suiFeng采纳,获得10
8秒前
三六九完成签到,获得积分10
8秒前
无花果应助zjd采纳,获得10
10秒前
执着的笑南完成签到,获得积分10
12秒前
13秒前
13秒前
16秒前
快乐科研完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
快乐科研发布了新的文献求助10
19秒前
核桃发布了新的文献求助10
20秒前
希望天下0贩的0应助wodel采纳,获得10
20秒前
研友_VZG7GZ应助许子健采纳,获得10
21秒前
chenlichan发布了新的文献求助10
22秒前
ssk发布了新的文献求助10
22秒前
孙一完成签到,获得积分10
25秒前
26秒前
26秒前
28秒前
乐乐应助modesty采纳,获得10
28秒前
29秒前
CodeCraft应助快乐科研采纳,获得10
29秒前
诚心青曼发布了新的文献求助10
32秒前
yznfly应助fan采纳,获得30
33秒前
33秒前
佳佳应助ssk采纳,获得10
33秒前
LING发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388