已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:21
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼傀斗发布了新的文献求助10
刚刚
1秒前
2秒前
胡亚楠完成签到,获得积分10
3秒前
芬达完成签到 ,获得积分10
3秒前
ARESCI完成签到,获得积分20
3秒前
英姑应助隐形路灯采纳,获得10
5秒前
英俊的铭应助utopia采纳,获得30
6秒前
wobisheng完成签到,获得积分10
6秒前
6秒前
欢呼傀斗完成签到,获得积分10
7秒前
7秒前
9秒前
汤圆完成签到 ,获得积分10
11秒前
betyby完成签到 ,获得积分10
11秒前
11秒前
ARESCI发布了新的文献求助10
11秒前
亭2007完成签到 ,获得积分10
12秒前
Monicadd完成签到 ,获得积分10
13秒前
13秒前
研友_LNMmW8发布了新的文献求助20
13秒前
kk完成签到 ,获得积分10
14秒前
easy发布了新的文献求助10
14秒前
任朝暮完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
我是老大应助DLQ采纳,获得50
16秒前
希望天下0贩的0应助djbj2022采纳,获得10
17秒前
害羞的书芹完成签到,获得积分10
20秒前
田様应助ARESCI采纳,获得10
21秒前
龟龟完成签到,获得积分10
22秒前
22秒前
23秒前
陈七发布了新的文献求助10
23秒前
郭佳鑫完成签到 ,获得积分10
26秒前
26秒前
落寞臻完成签到,获得积分10
27秒前
27秒前
隐形路灯发布了新的文献求助10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449585
求助须知:如何正确求助?哪些是违规求助? 4557665
关于积分的说明 14264735
捐赠科研通 4480771
什么是DOI,文献DOI怎么找? 2454561
邀请新用户注册赠送积分活动 1445350
关于科研通互助平台的介绍 1421075