已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:21
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
复杂的小之应助Wendell采纳,获得10
2秒前
酷酷的如天完成签到,获得积分10
2秒前
3秒前
周周发布了新的文献求助10
4秒前
时老完成签到 ,获得积分10
5秒前
完美世界应助暴躁的薯片采纳,获得10
5秒前
6秒前
zyw发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
棉花完成签到 ,获得积分10
11秒前
小马甲应助RC_Wang采纳,获得10
12秒前
总是很简单完成签到 ,获得积分10
12秒前
小豹子发布了新的文献求助10
12秒前
迅速的鲂发布了新的文献求助10
14秒前
丘比特应助宇宙超人007008采纳,获得10
14秒前
语行完成签到 ,获得积分10
15秒前
从嘉发布了新的文献求助10
17秒前
19秒前
婷糖完成签到,获得积分10
20秒前
Lucas应助TaoJ采纳,获得10
20秒前
22秒前
所所应助笑容采纳,获得10
22秒前
希望天下0贩的0应助十四采纳,获得10
23秒前
24秒前
木吉完成签到,获得积分10
25秒前
ccL完成签到 ,获得积分10
25秒前
zzzdx发布了新的文献求助10
26秒前
无花果应助月亮采纳,获得10
26秒前
TaoJ发布了新的文献求助10
27秒前
慕青应助小鱼采纳,获得30
27秒前
28秒前
桐桐应助木吉采纳,获得10
31秒前
32秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
杨乃彬发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779281
求助须知:如何正确求助?哪些是违规求助? 5646668
关于积分的说明 15451607
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642806
邀请新用户注册赠送积分活动 1590481
关于科研通互助平台的介绍 1544838