亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:21
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助优美的诗霜采纳,获得10
2秒前
2秒前
嘻嘻哈哈应助动听千山采纳,获得10
5秒前
6秒前
鲸jing发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得30
13秒前
嘻嘻哈哈应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
嘻嘻哈哈应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
嘻嘻哈哈应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
嘻嘻哈哈应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
ZXneuro完成签到,获得积分10
15秒前
18秒前
偏偏完成签到 ,获得积分10
19秒前
传奇3应助鲸jing采纳,获得10
22秒前
23秒前
24秒前
平淡如天完成签到,获得积分10
24秒前
CodeCraft应助Hung采纳,获得10
24秒前
乐乐应助现代听枫采纳,获得10
25秒前
数学初学者完成签到,获得积分10
26秒前
30秒前
Orin完成签到,获得积分10
35秒前
38秒前
43秒前
团宝妞宝完成签到,获得积分10
43秒前
43秒前
秀丽的西牛完成签到,获得积分10
46秒前
mm完成签到 ,获得积分10
46秒前
阿鱼完成签到 ,获得积分10
47秒前
噜啦啦完成签到 ,获得积分10
54秒前
hhhh完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252