Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:21
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
之之完成签到,获得积分10
刚刚
Joaquin完成签到,获得积分10
1秒前
穿红靴的小兔子完成签到,获得积分10
1秒前
车车完成签到,获得积分10
1秒前
heniancheng完成签到 ,获得积分10
1秒前
秦尔晗发布了新的文献求助10
1秒前
Queena完成签到,获得积分10
1秒前
1秒前
GYJ完成签到 ,获得积分10
1秒前
诗槐完成签到,获得积分10
2秒前
ATYS完成签到,获得积分10
2秒前
DZQ完成签到,获得积分10
3秒前
流沙无言完成签到 ,获得积分10
3秒前
abc完成签到 ,获得积分10
4秒前
沉默的婴完成签到 ,获得积分10
4秒前
xcuwlj完成签到 ,获得积分10
4秒前
4秒前
Kay76完成签到,获得积分10
5秒前
chen完成签到,获得积分10
5秒前
王志鹏完成签到 ,获得积分10
5秒前
愉快谷芹完成签到 ,获得积分10
5秒前
yanmu2010完成签到,获得积分10
6秒前
潇洒的白昼完成签到,获得积分10
6秒前
eiland完成签到,获得积分10
6秒前
大豆终结者完成签到,获得积分10
6秒前
7秒前
2025晨晨完成签到 ,获得积分10
8秒前
路西法发布了新的文献求助10
8秒前
wqwq69完成签到,获得积分10
9秒前
雪白幻巧完成签到,获得积分10
9秒前
xxx1234完成签到,获得积分10
9秒前
Shuey完成签到,获得积分10
9秒前
甜美的秋尽完成签到,获得积分10
10秒前
FredYao发布了新的文献求助10
11秒前
英俊安荷完成签到,获得积分10
11秒前
12秒前
小宝贝啥也不懂完成签到,获得积分10
12秒前
与可完成签到,获得积分10
14秒前
金色晨光完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427026
求助须知:如何正确求助?哪些是违规求助? 4540594
关于积分的说明 14172844
捐赠科研通 4458544
什么是DOI,文献DOI怎么找? 2445051
邀请新用户注册赠送积分活动 1436111
关于科研通互助平台的介绍 1413646