Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:21
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小洋完成签到,获得积分10
1秒前
NIHAO完成签到,获得积分10
1秒前
Achhz发布了新的文献求助10
2秒前
LX完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
FadeSv完成签到,获得积分10
3秒前
sulin关注了科研通微信公众号
4秒前
NIHAO发布了新的文献求助10
4秒前
Chris发布了新的文献求助10
5秒前
不舍天真发布了新的文献求助10
5秒前
5秒前
酷波er应助熊猫采纳,获得10
5秒前
年轻迪奥发布了新的文献求助10
7秒前
7秒前
顾矜应助王艺霖采纳,获得10
7秒前
NI发布了新的文献求助10
8秒前
FIREWORK完成签到,获得积分10
8秒前
lwb完成签到,获得积分10
9秒前
9秒前
小洋关注了科研通微信公众号
9秒前
搜集达人应助LBQ采纳,获得10
10秒前
求知的周发布了新的文献求助30
14秒前
14秒前
彩色耳机完成签到,获得积分10
14秒前
平常兰发布了新的文献求助10
15秒前
15秒前
麦地娜发布了新的文献求助10
16秒前
17秒前
烟花应助害羞的天真采纳,获得10
17秒前
EliGolden完成签到,获得积分10
18秒前
义气的翅膀完成签到,获得积分10
19秒前
19秒前
AAA房地产小王完成签到,获得积分10
19秒前
19秒前
情情晴情情完成签到,获得积分10
20秒前
迷路雨寒应助张瑶采纳,获得100
20秒前
cccc发布了新的文献求助10
21秒前
温暖发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049