亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:21
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wop111应助ceeray23采纳,获得20
1秒前
冷静的振家完成签到,获得积分10
3秒前
年轻千愁完成签到 ,获得积分10
5秒前
桥西发布了新的文献求助10
7秒前
Ruby_Kwak完成签到 ,获得积分20
11秒前
TXZ06完成签到,获得积分10
14秒前
111完成签到 ,获得积分10
19秒前
19秒前
23秒前
柳行天完成签到 ,获得积分10
26秒前
ZHU应助辛巴采纳,获得10
27秒前
sunwen发布了新的文献求助10
29秒前
开朗白山发布了新的文献求助10
30秒前
ho应助Hayat采纳,获得30
34秒前
35秒前
48秒前
Hello应助科研通管家采纳,获得10
49秒前
ho应助科研通管家采纳,获得10
49秒前
49秒前
开朗白山完成签到,获得积分10
1分钟前
wop111应助444采纳,获得30
1分钟前
嘻嘻哈哈应助ceeray23采纳,获得20
1分钟前
欣喜糖豆完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
1分钟前
务实书包完成签到,获得积分10
1分钟前
阿哲完成签到 ,获得积分10
1分钟前
1分钟前
kentonchow应助ceeray23采纳,获得20
1分钟前
怕孤独的忆南完成签到,获得积分10
1分钟前
kentonchow应助ceeray23采纳,获得20
1分钟前
炙热尔阳完成签到 ,获得积分10
1分钟前
2分钟前
hyl发布了新的文献求助10
2分钟前
puuuunido完成签到 ,获得积分10
2分钟前
科研通AI6应助如鼠采纳,获得200
2分钟前
辛巴发布了新的文献求助10
2分钟前
ZTLlele完成签到 ,获得积分10
2分钟前
魔幻诗兰发布了新的文献求助10
2分钟前
汉堡包应助ceeray23采纳,获得20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376334
求助须知:如何正确求助?哪些是违规求助? 4501440
关于积分的说明 14013025
捐赠科研通 4409203
什么是DOI,文献DOI怎么找? 2422108
邀请新用户注册赠送积分活动 1414895
关于科研通互助平台的介绍 1391758