已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved prediction of tree species richness and interpretability of environmental drivers using a machine learning approach

可解释性 随机森林 协变量 物种丰富度 广义线性模型 广义加性模型 生物多样性 机器学习 统计 生态学 线性模型 计算机科学 数学 生物
作者
Lian Brugere,Youngsang Kwon,Amy E. Frazier,Peter Kedron
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:539: 120972-120972 被引量:6
标识
DOI:10.1016/j.foreco.2023.120972
摘要

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable uncertainties exist in current models, particularly given the classic statistical assumptions and poor ecological interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning approaches to predict TSR and interpret the driving environmental factors in the continental United States. We develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity for other organisms or prediction of TSR under future climatic scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助KTaoL采纳,获得10
1秒前
健壮不斜完成签到 ,获得积分10
1秒前
孤独靖柏发布了新的文献求助10
2秒前
百里一一完成签到,获得积分10
4秒前
NexusExplorer应助xanderxue采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
雪雪发布了新的文献求助10
8秒前
云澈发布了新的文献求助10
11秒前
12秒前
14秒前
16秒前
科研通AI2S应助Zhouyue采纳,获得10
17秒前
19秒前
Ji完成签到,获得积分10
20秒前
吃星红豆完成签到,获得积分10
21秒前
22秒前
敏er好学发布了新的文献求助10
22秒前
彭林完成签到 ,获得积分10
24秒前
YQT完成签到,获得积分10
26秒前
27秒前
Gryphon完成签到,获得积分10
27秒前
岁月静好发布了新的文献求助10
29秒前
中央发布了新的文献求助10
29秒前
大友完成签到,获得积分10
30秒前
团子发布了新的文献求助10
30秒前
W查查完成签到,获得积分10
31秒前
Mocca完成签到,获得积分10
32秒前
32秒前
动听的易巧完成签到 ,获得积分10
35秒前
wanci应助_ban采纳,获得20
39秒前
脑洞疼应助团子采纳,获得10
39秒前
41秒前
44秒前
45秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129906
求助须知:如何正确求助?哪些是违规求助? 2780653
关于积分的说明 7749626
捐赠科研通 2435992
什么是DOI,文献DOI怎么找? 1294442
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570