De novo design of protein interactions with learned surface fingerprints

计算生物学 生物信息学 合成生物学 蛋白质设计 蛋白质-蛋白质相互作用 表面蛋白 功能(生物学) 分子识别 蛋白质工程 蛋白质结构 计算机科学 生物 化学 遗传学 基因 生物化学 病毒学 有机化学 分子
作者
Pablo Gaínza,Sarah Wehrle,Alexandra Van Hall‐Beauvais,Anthony Marchand,Andreas Scheck,Zander Harteveld,Stephen Buckley,Dongchun Ni,Shuguang Tan,Freyr Sverrisson,Casper A. Goverde,Priscilla Turelli,Charlène Raclot,Alexandra Teslenko,Martin Pačesa,Stéphane Rosset,Sandrine Georgeon,Jane Marsden,Aaron S. Petruzzella,Kefang Liu,Zepeng Xu,Yan Chai,Pu Han,George F. Gao,Elisa Oricchio,Beat Fierz,Didier Trono,Henning Stahlberg,Michael M. Bronstein,Bruno E. Correia
出处
期刊:Nature [Nature Portfolio]
卷期号:617 (7959): 176-184 被引量:81
标识
DOI:10.1038/s41586-023-05993-x
摘要

Abstract Physical interactions between proteins are essential for most biological processes governing life 1 . However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein–protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications 2–9 . Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein–protein interactions 10 . We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯嗯完成签到,获得积分10
1秒前
JamesPei应助小新小新采纳,获得10
1秒前
ice完成签到 ,获得积分10
2秒前
天天快乐应助龙华之士采纳,获得10
3秒前
桐桐应助嘿哈采纳,获得10
3秒前
双双完成签到,获得积分10
3秒前
ggbond完成签到 ,获得积分10
3秒前
洁净灭男完成签到,获得积分10
4秒前
KingLancet发布了新的文献求助10
4秒前
盒子先生完成签到,获得积分10
4秒前
ChengJT发布了新的文献求助30
5秒前
5秒前
城南花已开完成签到,获得积分10
6秒前
wickedzz完成签到,获得积分10
6秒前
6秒前
7秒前
yanm发布了新的文献求助10
7秒前
哈哈哈哈哈完成签到,获得积分10
7秒前
青黄应助外向半梅采纳,获得10
7秒前
木头发布了新的文献求助10
8秒前
淡定翠桃完成签到,获得积分20
8秒前
CipherSage应助隐形的文昊采纳,获得10
8秒前
8秒前
晓天完成签到,获得积分10
8秒前
精明曼荷完成签到,获得积分10
8秒前
22发布了新的文献求助10
9秒前
方圆几里完成签到,获得积分10
10秒前
小二郎应助tcf采纳,获得10
10秒前
卷王完成签到,获得积分10
10秒前
lihua完成签到,获得积分20
10秒前
欢喜的小天鹅完成签到 ,获得积分10
10秒前
大模型应助xiaobizaizhi233采纳,获得10
11秒前
小马甲应助KX2024采纳,获得10
12秒前
彩色蘑菇完成签到,获得积分10
12秒前
时尚语梦完成签到 ,获得积分10
12秒前
莹0000发布了新的文献求助10
12秒前
悟空发布了新的文献求助20
12秒前
彭于晏应助chen采纳,获得10
12秒前
02完成签到,获得积分10
13秒前
Yiya完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051