Unbiased estimation based multivariate alarm design considering temporal and multimodal process characteristics

多元统计 单变量 计算机科学 警报 假警报 过程(计算) 恒虚警率 人工智能 数据挖掘 模式识别(心理学) 机器学习 工程类 操作系统 航空航天工程
作者
Chang Tian,Chunhui Zhao
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:136: 105531-105531
标识
DOI:10.1016/j.conengprac.2023.105531
摘要

In alarm systems, conventional univariate alarm methods often result in frequent false and missing alarms, calling for an urgent need to introduce multivariate information. For the multivariate alarm design, although each variable’s detection sensitivity is improved with the assistance of other variables, it is also susceptible to anomalies of other variables. Therefore, it is a challenge to properly introduce multivariate information, especially for complex processes subject to operating condition changes. This paper proposes a multivariate alarm framework that complements temporal and multimodal process characteristics to better alarm for variables by unbiased estimation. The temporal and multimodal characteristics are explored by prediction-oriented network structure and reconstruction-oriented network structure, respectively. To make them properly integrated, pattern labels that reveal the modes change are designed and used as the bridge between the temporal and the multimodal parts. On the one hand, the consideration of two types of characteristics allows perceiving temporal-related and modal-related faults, promoting sensitive alarm performance. On the other hand, unifying the two types of networks can eliminate the estimation bias of normal variables, making them unsusceptible to anomalies of other variables and promoting accurate alarm performance. Experiments on the coal mill prove the effectiveness of the proposed method regarding false alarm rate and missing alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M先生发布了新的文献求助30
1秒前
FashionBoy应助许多知识采纳,获得10
2秒前
Poyd完成签到,获得积分10
5秒前
5秒前
故意的傲玉应助tao_blue采纳,获得10
6秒前
6秒前
kid1912完成签到,获得积分0
6秒前
小马甲应助一网小海蜇采纳,获得10
9秒前
专一的笑阳完成签到 ,获得积分10
9秒前
xuesensu完成签到 ,获得积分10
13秒前
豌豆完成签到,获得积分10
14秒前
M先生完成签到,获得积分10
14秒前
15秒前
17秒前
科研通AI5应助sun采纳,获得10
17秒前
shitzu完成签到 ,获得积分10
18秒前
choco发布了新的文献求助10
20秒前
21秒前
李健的小迷弟应助sun采纳,获得10
21秒前
Jzhang应助liyuchen采纳,获得10
21秒前
魏伯安发布了新的文献求助30
21秒前
jjjjjj发布了新的文献求助30
23秒前
24秒前
伯赏诗霜发布了新的文献求助10
24秒前
糟糕的鹏飞完成签到 ,获得积分10
25秒前
25秒前
欢呼凡旋完成签到,获得积分10
26秒前
韩邹光完成签到,获得积分10
28秒前
xg发布了新的文献求助10
28秒前
29秒前
dktrrrr完成签到,获得积分10
29秒前
季生完成签到,获得积分10
32秒前
徐徐完成签到,获得积分10
32秒前
33秒前
33秒前
haku完成签到,获得积分10
35秒前
可爱的函函应助laodie采纳,获得10
37秒前
Singularity应助忆楠采纳,获得10
38秒前
39秒前
请叫我风吹麦浪应助PengHu采纳,获得30
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849