Unbiased estimation based multivariate alarm design considering temporal and multimodal process characteristics

多元统计 单变量 计算机科学 警报 假警报 过程(计算) 恒虚警率 人工智能 数据挖掘 模式识别(心理学) 机器学习 工程类 操作系统 航空航天工程
作者
Chang Tian,Chunhui Zhao
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:136: 105531-105531
标识
DOI:10.1016/j.conengprac.2023.105531
摘要

In alarm systems, conventional univariate alarm methods often result in frequent false and missing alarms, calling for an urgent need to introduce multivariate information. For the multivariate alarm design, although each variable’s detection sensitivity is improved with the assistance of other variables, it is also susceptible to anomalies of other variables. Therefore, it is a challenge to properly introduce multivariate information, especially for complex processes subject to operating condition changes. This paper proposes a multivariate alarm framework that complements temporal and multimodal process characteristics to better alarm for variables by unbiased estimation. The temporal and multimodal characteristics are explored by prediction-oriented network structure and reconstruction-oriented network structure, respectively. To make them properly integrated, pattern labels that reveal the modes change are designed and used as the bridge between the temporal and the multimodal parts. On the one hand, the consideration of two types of characteristics allows perceiving temporal-related and modal-related faults, promoting sensitive alarm performance. On the other hand, unifying the two types of networks can eliminate the estimation bias of normal variables, making them unsusceptible to anomalies of other variables and promoting accurate alarm performance. Experiments on the coal mill prove the effectiveness of the proposed method regarding false alarm rate and missing alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷沛柔完成签到 ,获得积分10
1秒前
林狗完成签到,获得积分10
1秒前
活力的驳发布了新的文献求助30
1秒前
taimeili完成签到,获得积分10
2秒前
自强不息完成签到,获得积分10
2秒前
小马甲应助yeyeye采纳,获得10
2秒前
洪云峰发布了新的文献求助30
2秒前
Fei发布了新的文献求助10
2秒前
2秒前
3秒前
脑洞疼应助学习采纳,获得10
5秒前
5秒前
梅西完成签到 ,获得积分10
6秒前
爱糖果的木完成签到,获得积分10
7秒前
zzz关闭了zzz文献求助
7秒前
LWJJNU完成签到 ,获得积分10
9秒前
不准吃烤肉完成签到,获得积分10
9秒前
9秒前
10秒前
真实的依白应助董瑞采纳,获得20
10秒前
11秒前
12秒前
是真的完成签到 ,获得积分10
12秒前
Jasper应助qqwrv采纳,获得10
12秒前
yeyeye完成签到,获得积分20
13秒前
cureall完成签到 ,获得积分10
13秒前
莫默发布了新的文献求助10
13秒前
shepherd完成签到,获得积分10
13秒前
河鲸发布了新的文献求助10
14秒前
midokaori发布了新的文献求助10
14秒前
CucRuotThua完成签到,获得积分10
14秒前
labxgr发布了新的文献求助10
15秒前
dis完成签到,获得积分10
15秒前
Jasper应助果实采纳,获得10
15秒前
浅尝离白完成签到,获得积分0
15秒前
Shiku完成签到,获得积分10
15秒前
alex发布了新的文献求助10
15秒前
Aru发布了新的文献求助40
16秒前
呜呜呜呜完成签到,获得积分10
16秒前
ffffwj2024完成签到 ,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149