亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The development and validation of a non-invasive prediction model of hyperuricemia based on modifiable risk factors: baseline findings of a health examination population cohort

医学 逻辑回归 北京 高尿酸血症 人口 队列 预测建模 环境卫生 人口学 内科学 统计 尿酸 数学 中国 法学 社会学 政治学
作者
Shuo Chen,Wei Han,Linrun Kong,Qiang Li,Chengdong Yu,Jingbo Zhang,Huijing He
出处
期刊:Food & Function [The Royal Society of Chemistry]
卷期号:14 (13): 6073-6082 被引量:5
标识
DOI:10.1039/d3fo01363d
摘要

This study aims to establish a simple and non-invasive risk prediction model for hyperuricemia in Chinese adults based on modifiable risk factors. In 2020-2021, the baseline survey of the Beijing Health Management Cohort (BHMC) was conducted in Beijing city among the health examination population. Diverse life-style risk factors including dietary patterns and habits, cigarette smoking, alcohol intake, sleep duration and cell-phone use were collected. We developed hyperuricemia prediction models using three machine-learning techniques, namely logistic regression (LR), random forest (RF), and XGBoost. Performances in discrimination, calibration, and clinical applicability of the three methods were compared. Decision curve analysis (DCA) was used to assess the model's clinical usefulness. A total of 74 050 people were included in the study, of whom 55 537 (75%) were randomly selected into the training set and the other 18 513 (25%) were in the validation set. The prevalence of HUA was 38.43% in men and 13.29% in women. The XGBoost model has better performance than the LR and RF models. The area under the curve (AUC) (95% CI) in the training set for the LR, RF and XGBoost models were 0.754 (0.750-0.757), 0.844 (0.841-0.846) and 0.854 (0.851-0.856), respectively. The XGBoost model had a higher classification accuracy of 0.774 than the logistic (0.592) and RF (0.767) models. The AUC (95% CI) values in the validation set for the LR, RF and XGBoost models were 0.758 (0.749-0.765), 0.809 (0.802-0.816) and 0.820 (0.813-0.827), respectively. As demonstrated by the DCA curves, all the three models could bring net benefits within the appropriate threshold probability. XGBoost had better discrimination and accuracy. Various modifiable risk factors included in the model were helpful in facilitating the easy identification and life-style interventions of the HUA high-risk population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研垃圾完成签到,获得积分20
6秒前
15秒前
科研垃圾发布了新的文献求助10
20秒前
日渐消瘦完成签到 ,获得积分10
24秒前
wanci应助科研通管家采纳,获得30
41秒前
妄自发布了新的文献求助10
49秒前
妄自完成签到,获得积分10
57秒前
迅速的蜡烛完成签到 ,获得积分10
1分钟前
萝卜丁完成签到 ,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
2分钟前
fantw完成签到,获得积分20
3分钟前
bkagyin应助yff采纳,获得30
3分钟前
3分钟前
yff发布了新的文献求助30
3分钟前
科研通AI2S应助yff采纳,获得10
4分钟前
sofardli发布了新的文献求助10
4分钟前
科研通AI2S应助NCL采纳,获得10
4分钟前
从容芮应助科研通管家采纳,获得60
4分钟前
招水若离完成签到,获得积分10
4分钟前
sofardli完成签到,获得积分10
5分钟前
5分钟前
wtsow完成签到,获得积分0
5分钟前
Shandongdaxiu完成签到 ,获得积分10
6分钟前
依然灬聆听完成签到,获得积分10
6分钟前
杨明明完成签到,获得积分20
6分钟前
小杜发布了新的文献求助10
9分钟前
jason完成签到 ,获得积分10
9分钟前
在水一方应助小杜采纳,获得10
9分钟前
9分钟前
爱静静举报小趴蔡求助涉嫌违规
10分钟前
李剑鸿发布了新的文献求助30
11分钟前
李剑鸿发布了新的文献求助30
11分钟前
Hello应助Grayball采纳,获得30
11分钟前
12分钟前
12分钟前
Grayball发布了新的文献求助30
12分钟前
12分钟前
Fox完成签到 ,获得积分10
14分钟前
Magali发布了新的文献求助10
14分钟前
Legoxpy完成签到,获得积分20
14分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826565
捐赠科研通 2454548
什么是DOI,文献DOI怎么找? 1306376
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527