Data Balancing and CNN based Network Intrusion Detection System

计算机科学 入侵检测系统 入侵防御系统 计算机网络 人工智能
作者
Omar Elghalhoud,Kshirasagar Naik,Marzia Zaman,Ricardo Manzano S
标识
DOI:10.1109/wcnc55385.2023.10118702
摘要

Cyber-security experts often require the help of an automated process that filters and classifies network attacks. To apply specific preventive measures for securing networks, the classification of the attack type is the key. Many Machine Learning (ML) models have been proposed as a base for Network Intrusion Detection (NID) systems. However, their performance varies based on multiple factors. For instance, an ML model fitted on a highly imbalanced dataset can be biased toward over-represented attack types. On the other hand, paying attention only to the ML model's performance in the minority classes can negatively affect its performance in the majority classes. This paper proposes an NID system that addresses the issue of imbalanced datasets and uses Convolutional Neural Networks (CNN) to classify the different attack types. We compare the performance of our proposed system to other systems that use: Random Over-Sampling (ROS), Synthetic Minority Oversampling TEchnique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and Generative Adversarial Networks (GAN). Using the NSL-KDD and the BoT-IoT datasets for benchmarking, we show that our proposed system performs well in the minority classes: recall scores of 70.50% and 72.08% on the User to Root (U2R) and Remote to Local (R2L) attack classes of the NSL-KDD dataset, respectively, while maintaining an overall False Alarm Rate (FAR) of 6.50% and a recall of 90.46% on the binary classification task. Our proposed system scores a weighted average F1-Score of 99.45% on the multi-class classification task using the BoT-IoT dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助SIC采纳,获得10
刚刚
刚刚
Stella应助Ccccc采纳,获得10
刚刚
zz完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
完美世界应助小诗采纳,获得10
2秒前
2秒前
Ava应助top采纳,获得10
2秒前
张瑾伃完成签到,获得积分10
2秒前
doctoryu完成签到,获得积分20
2秒前
萨达完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助mmmy采纳,获得10
4秒前
今后应助mmmy采纳,获得10
4秒前
顺心夜南应助Yuru采纳,获得100
4秒前
4秒前
4秒前
5秒前
Aipoi发布了新的文献求助10
6秒前
6秒前
6秒前
冯俞淇发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
852应助被风吹过的路采纳,获得10
9秒前
9秒前
吱吱发布了新的文献求助10
10秒前
贪玩半雪发布了新的文献求助10
10秒前
10秒前
10秒前
科研dog发布了新的文献求助10
11秒前
lizhen发布了新的文献求助10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671