Data Balancing and CNN based Network Intrusion Detection System

计算机科学 入侵检测系统 入侵防御系统 计算机网络 人工智能
作者
Omar Elghalhoud,Kshirasagar Naik,Marzia Zaman,Ricardo Manzano S
标识
DOI:10.1109/wcnc55385.2023.10118702
摘要

Cyber-security experts often require the help of an automated process that filters and classifies network attacks. To apply specific preventive measures for securing networks, the classification of the attack type is the key. Many Machine Learning (ML) models have been proposed as a base for Network Intrusion Detection (NID) systems. However, their performance varies based on multiple factors. For instance, an ML model fitted on a highly imbalanced dataset can be biased toward over-represented attack types. On the other hand, paying attention only to the ML model's performance in the minority classes can negatively affect its performance in the majority classes. This paper proposes an NID system that addresses the issue of imbalanced datasets and uses Convolutional Neural Networks (CNN) to classify the different attack types. We compare the performance of our proposed system to other systems that use: Random Over-Sampling (ROS), Synthetic Minority Oversampling TEchnique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and Generative Adversarial Networks (GAN). Using the NSL-KDD and the BoT-IoT datasets for benchmarking, we show that our proposed system performs well in the minority classes: recall scores of 70.50% and 72.08% on the User to Root (U2R) and Remote to Local (R2L) attack classes of the NSL-KDD dataset, respectively, while maintaining an overall False Alarm Rate (FAR) of 6.50% and a recall of 90.46% on the binary classification task. Our proposed system scores a weighted average F1-Score of 99.45% on the multi-class classification task using the BoT-IoT dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Amor采纳,获得10
2秒前
不羁的风完成签到 ,获得积分10
2秒前
4秒前
4秒前
北斗HH完成签到,获得积分10
6秒前
6秒前
潇湘雪月完成签到,获得积分10
7秒前
8秒前
忧郁的香魔完成签到,获得积分10
9秒前
奶味蓝发布了新的文献求助10
10秒前
12秒前
王俊完成签到,获得积分10
12秒前
袁大头发布了新的文献求助10
14秒前
可靠从云完成签到 ,获得积分10
15秒前
15秒前
温暖幻桃发布了新的文献求助10
15秒前
Zrysaa完成签到,获得积分10
16秒前
搜集达人应助一念来回采纳,获得10
17秒前
18秒前
HuFan1201完成签到 ,获得积分10
19秒前
sweetbearm应助3137874883采纳,获得10
19秒前
19秒前
陈品琪完成签到,获得积分10
20秒前
20秒前
良辰应助帅气的黑猫采纳,获得10
21秒前
22秒前
不安的蓝血完成签到,获得积分20
22秒前
华子的五A替身完成签到,获得积分10
24秒前
闪闪的以山完成签到 ,获得积分10
24秒前
杨杨杨发布了新的文献求助10
24秒前
25秒前
苗芸发布了新的文献求助10
26秒前
yang发布了新的文献求助10
26秒前
kelite发布了新的文献求助10
27秒前
Hello应助奋斗的元珊采纳,获得10
27秒前
28秒前
31秒前
cherry完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522937
求助须知:如何正确求助?哪些是违规求助? 3103910
关于积分的说明 9267916
捐赠科研通 2800665
什么是DOI,文献DOI怎么找? 1537075
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759