Data Balancing and CNN based Network Intrusion Detection System

计算机科学 入侵检测系统 入侵防御系统 计算机网络 人工智能
作者
Omar Elghalhoud,Kshirasagar Naik,Marzia Zaman,Ricardo Manzano S
标识
DOI:10.1109/wcnc55385.2023.10118702
摘要

Cyber-security experts often require the help of an automated process that filters and classifies network attacks. To apply specific preventive measures for securing networks, the classification of the attack type is the key. Many Machine Learning (ML) models have been proposed as a base for Network Intrusion Detection (NID) systems. However, their performance varies based on multiple factors. For instance, an ML model fitted on a highly imbalanced dataset can be biased toward over-represented attack types. On the other hand, paying attention only to the ML model's performance in the minority classes can negatively affect its performance in the majority classes. This paper proposes an NID system that addresses the issue of imbalanced datasets and uses Convolutional Neural Networks (CNN) to classify the different attack types. We compare the performance of our proposed system to other systems that use: Random Over-Sampling (ROS), Synthetic Minority Oversampling TEchnique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and Generative Adversarial Networks (GAN). Using the NSL-KDD and the BoT-IoT datasets for benchmarking, we show that our proposed system performs well in the minority classes: recall scores of 70.50% and 72.08% on the User to Root (U2R) and Remote to Local (R2L) attack classes of the NSL-KDD dataset, respectively, while maintaining an overall False Alarm Rate (FAR) of 6.50% and a recall of 90.46% on the binary classification task. Our proposed system scores a weighted average F1-Score of 99.45% on the multi-class classification task using the BoT-IoT dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Summeryz920发布了新的文献求助10
2秒前
3秒前
星辰大海应助阔达碧空采纳,获得10
3秒前
lulu完成签到 ,获得积分10
4秒前
4秒前
赛赛完成签到,获得积分20
4秒前
noob_发布了新的文献求助10
4秒前
端庄的以寒完成签到 ,获得积分10
4秒前
田...完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
万一发布了新的文献求助10
9秒前
noob_完成签到,获得积分20
9秒前
9秒前
CKK发布了新的文献求助10
10秒前
10秒前
星辰大海应助王星星采纳,获得10
11秒前
lwl发布了新的文献求助10
11秒前
隐形曼青应助Aman采纳,获得10
12秒前
欣喜石头发布了新的文献求助10
13秒前
zsy发布了新的文献求助10
16秒前
Rondab应助llllissa采纳,获得10
17秒前
18秒前
酷波er应助kzf丶bryant采纳,获得10
20秒前
zsy完成签到,获得积分10
22秒前
桃子完成签到 ,获得积分10
22秒前
852应助lwl采纳,获得10
22秒前
816完成签到,获得积分10
23秒前
SCIER完成签到,获得积分10
23秒前
23秒前
英姑应助刮刮粉儿采纳,获得10
23秒前
万一完成签到,获得积分10
24秒前
sting发布了新的文献求助10
24秒前
27秒前
29秒前
充电宝应助jy采纳,获得10
29秒前
桃子牛肉酱完成签到 ,获得积分10
30秒前
CKK发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731