已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Density Functional Theory and Machine Learning for Electrochemical Square-Scheme Prediction: An Application to Quinone-type Molecules Relevant to Redox Flow Batteries

氧化还原 密度泛函理论 轨道能级差 化学 电子转移 分子 质子 计算化学 化学物理 生物系统 物理化学 物理 量子力学 有机化学 生物
作者
Arsalan Hashemi,Reza Khakpour,Amir Mahdian,Michael Busch,Pekka Peljo,Kari Laasonen
标识
DOI:10.26434/chemrxiv-2023-wfv75
摘要

Proton-electron transfer (PET) reactions are rather common in chemistry and crucial in energy storage applications. How electrons and protons are involved or which mechanism dominates is strongly molecule and pH dependent. It is the nature of the participants in the reaction that dictates how electrons and protons are involved and which mechanism dominates. Quantum chemical methods can be used to assess redox potential and acidity constant values but the computations are rather time consuming. In this work, supervised machine learning (ML) models are used to predict PET reactions and analyze molecular space. The data for ML have been created by density functional theory (DFT) calculations. Random Forest Regression models are trained and tested on a dataset that we created. The dataset contains more than 8200 organic molecules that each underwent a two-proton two-electron transfer process. Both structural and chemical descriptors are used. The HOMO of the reactant and LUMO of the product participating in the oxidation reaction appeared to be inversely associated with \oxE. Trained models using a SMILES-based descriptor can efficiently predict the pKa and redox potential with a mean absolute error of less than 1 and 66 mV, respectively. High prediction accuracy of $R^2 > 0.76$ and $> 0.90$ was also obtained on the external test set for redox potential and pKa, respectively. This hybrid DFT-ML study can be applied to speed up the screening of quinone-type molecules for energy storage and other applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
夏惋清完成签到 ,获得积分0
4秒前
称心的水蓉完成签到,获得积分10
4秒前
5秒前
肉肉发布了新的文献求助10
5秒前
6秒前
冰激凌发布了新的文献求助10
6秒前
Longbin李发布了新的文献求助10
7秒前
7秒前
木头完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得20
9秒前
9秒前
10秒前
10秒前
韭菜发布了新的文献求助10
10秒前
隐形曼青应助Teen采纳,获得10
11秒前
hl7166发布了新的文献求助30
12秒前
建新应助大聪明采纳,获得10
13秒前
研友_VZG7GZ应助韭菜采纳,获得10
15秒前
21秒前
24秒前
林夕完成签到,获得积分10
25秒前
bkagyin应助溪秋白采纳,获得10
26秒前
26秒前
春天的粥完成签到 ,获得积分10
29秒前
NexusExplorer应助orange9采纳,获得10
29秒前
唐诗111发布了新的文献求助10
31秒前
34秒前
34秒前
科研通AI2S应助噗通采纳,获得10
35秒前
35秒前
flasher22完成签到,获得积分10
35秒前
orange9发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497091
求助须知:如何正确求助?哪些是违规求助? 3081664
关于积分的说明 9168973
捐赠科研通 2774840
什么是DOI,文献DOI怎么找? 1522602
邀请新用户注册赠送积分活动 706128
科研通“疑难数据库(出版商)”最低求助积分说明 703220