Density Functional Theory and Machine Learning for Electrochemical Square-Scheme Prediction: An Application to Quinone-type Molecules Relevant to Redox Flow Batteries

氧化还原 密度泛函理论 轨道能级差 化学 电子转移 分子 质子 计算化学 化学物理 生物系统 物理化学 物理 量子力学 有机化学 生物
作者
Arsalan Hashemi,Reza Khakpour,Amir Mahdian,Michael Busch,Pekka Peljo,Kari Laasonen
标识
DOI:10.26434/chemrxiv-2023-wfv75
摘要

Proton-electron transfer (PET) reactions are rather common in chemistry and crucial in energy storage applications. How electrons and protons are involved or which mechanism dominates is strongly molecule and pH dependent. It is the nature of the participants in the reaction that dictates how electrons and protons are involved and which mechanism dominates. Quantum chemical methods can be used to assess redox potential and acidity constant values but the computations are rather time consuming. In this work, supervised machine learning (ML) models are used to predict PET reactions and analyze molecular space. The data for ML have been created by density functional theory (DFT) calculations. Random Forest Regression models are trained and tested on a dataset that we created. The dataset contains more than 8200 organic molecules that each underwent a two-proton two-electron transfer process. Both structural and chemical descriptors are used. The HOMO of the reactant and LUMO of the product participating in the oxidation reaction appeared to be inversely associated with \oxE. Trained models using a SMILES-based descriptor can efficiently predict the pKa and redox potential with a mean absolute error of less than 1 and 66 mV, respectively. High prediction accuracy of $R^2 > 0.76$ and $> 0.90$ was also obtained on the external test set for redox potential and pKa, respectively. This hybrid DFT-ML study can be applied to speed up the screening of quinone-type molecules for energy storage and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地平完成签到,获得积分10
4秒前
木木彡完成签到,获得积分10
4秒前
稞小弟完成签到,获得积分10
4秒前
4秒前
cai完成签到,获得积分10
5秒前
DLJ完成签到,获得积分10
5秒前
张叮当完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
懒羊羊发布了新的文献求助10
8秒前
9秒前
10秒前
华仔应助狂野芷蕾采纳,获得10
10秒前
大大怪发布了新的文献求助10
11秒前
zjt18完成签到,获得积分10
11秒前
香蕉觅云应助sylnd126采纳,获得10
12秒前
wqy完成签到,获得积分10
12秒前
WELXCNK完成签到,获得积分10
12秒前
junfeiwang发布了新的文献求助10
13秒前
14秒前
慎之完成签到 ,获得积分10
15秒前
专一的傲白完成签到 ,获得积分10
16秒前
喜悦的斓发布了新的文献求助10
17秒前
七七完成签到,获得积分10
17秒前
大恩区完成签到,获得积分10
18秒前
cash完成签到,获得积分20
19秒前
一枝完成签到 ,获得积分10
19秒前
ShiSakura完成签到,获得积分10
22秒前
顺利兰完成签到 ,获得积分10
22秒前
Orange应助Rong采纳,获得10
23秒前
cash发布了新的文献求助10
24秒前
大牛完成签到,获得积分10
24秒前
JamesPei应助junfeiwang采纳,获得10
24秒前
正直的松鼠完成签到 ,获得积分10
25秒前
虚幻初晴完成签到,获得积分20
25秒前
27秒前
Negoluse完成签到,获得积分10
27秒前
平常的秋天完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278