亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing effects of uncertainty in predictions of local and pantropical allometric models on large-area estimates for mean aboveground biomass per unit area

泛热带 异速滴定 生物量(生态学) 单位(环理论) 环境科学 统计 生态学 数学 生物 数学教育
作者
Laio Zimermann Oliveira,Ronald E. McRoberts,Alexander Christian Vibrans,Veraldo Liesenberg,Heitor Felippe Uller
出处
期刊:Forestry
标识
DOI:10.1093/forestry/cpaf008
摘要

Abstract In the absence of regional/local allometric models of known accuracy, pantropical models (PMs) are often employed for predicting aboveground biomass (AGB) for trees growing in (sub)tropical forests. Using accurate models for a given population is crucial to increase accuracy and reduce uncertainty in estimates for mean AGB per unit area. This study evaluated the effects of local models (LMs) and PMs on large-area estimates for mean AGB (Mg ha$^{-1}$) in the Brazilian subtropical evergreen rainforest. In addition to the uncertainty due to sampling variability in the forest inventory dataset, uncertainty in model parameter estimates and residual variability were incorporated into standard errors (SEs) of the estimator of the mean through a Monte Carlo scheme. Generally, estimates for mean AGB were somewhat similar regardless of the model. Estimates for mean AGB obtained using a PM constructed with moist forest sites only and an LM were not statistically significantly different at significance level of 0.05. However, substantially less precise estimates for mean AGB were obtained with LMs constructed with 50 sample trees or fewer relative to an LM constructed with 105 trees and PMs, mainly as an indirect effect of greater uncertainty in model parameter estimates. When correlation among tree observations on the same sample location was accounted for when fitting the PMs, SEs increased as much as 26%. Further, although the PMs were constructed with many-fold larger datasets, they yielded less precise estimates for mean AGB than the LM constructed with 105 trees. Nevertheless, the evaluated PMs may still be regarded as accurate for the studied population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到 ,获得积分10
1秒前
科研通AI5应助丹妮采纳,获得10
21秒前
HMG1COA完成签到 ,获得积分10
22秒前
26秒前
34秒前
费老三发布了新的文献求助10
34秒前
丹妮发布了新的文献求助10
37秒前
研友_VZG7GZ应助稳重的睿渊采纳,获得10
55秒前
57秒前
精灵夜雨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
nanali19完成签到,获得积分10
1分钟前
EthanLu发布了新的文献求助30
1分钟前
结实的涵柏完成签到 ,获得积分10
2分钟前
2分钟前
Georgechan完成签到,获得积分10
2分钟前
2分钟前
兴奋元冬发布了新的文献求助10
2分钟前
田様应助兴奋元冬采纳,获得10
2分钟前
3分钟前
wll发布了新的文献求助10
3分钟前
EthanLu完成签到,获得积分10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
兴奋元冬完成签到,获得积分10
3分钟前
3分钟前
HOVER发布了新的文献求助10
3分钟前
3分钟前
3分钟前
EthanLu发布了新的文献求助10
3分钟前
ly发布了新的文献求助10
3分钟前
3分钟前
兴奋元冬发布了新的文献求助10
3分钟前
4分钟前
VuuVuu完成签到,获得积分20
4分钟前
4分钟前
格林完成签到,获得积分10
4分钟前
格林发布了新的文献求助10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555736
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390856
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715803