Comparing effects of uncertainty in predictions of local and pantropical allometric models on large-area estimates for mean aboveground biomass per unit area

泛热带 异速滴定 生物量(生态学) 单位(环理论) 环境科学 统计 生态学 数学 生物 数学教育
作者
Laio Zimermann Oliveira,Ronald E. McRoberts,Alexander Christian Vibrans,Veraldo Liesenberg,Heitor Felippe Uller
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpaf008
摘要

Abstract In the absence of regional/local allometric models of known accuracy, pantropical models (PMs) are often employed for predicting aboveground biomass (AGB) for trees growing in (sub)tropical forests. Using accurate models for a given population is crucial to increase accuracy and reduce uncertainty in estimates for mean AGB per unit area. This study evaluated the effects of local models (LMs) and PMs on large-area estimates for mean AGB (Mg ha$^{-1}$) in the Brazilian subtropical evergreen rainforest. In addition to the uncertainty due to sampling variability in the forest inventory dataset, uncertainty in model parameter estimates and residual variability were incorporated into standard errors (SEs) of the estimator of the mean through a Monte Carlo scheme. Generally, estimates for mean AGB were somewhat similar regardless of the model. Estimates for mean AGB obtained using a PM constructed with moist forest sites only and an LM were not statistically significantly different at significance level of 0.05. However, substantially less precise estimates for mean AGB were obtained with LMs constructed with 50 sample trees or fewer relative to an LM constructed with 105 trees and PMs, mainly as an indirect effect of greater uncertainty in model parameter estimates. When correlation among tree observations on the same sample location was accounted for when fitting the PMs, SEs increased as much as 26%. Further, although the PMs were constructed with many-fold larger datasets, they yielded less precise estimates for mean AGB than the LM constructed with 105 trees. Nevertheless, the evaluated PMs may still be regarded as accurate for the studied population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hello完成签到,获得积分10
1秒前
我是老大应助无情的幻嫣采纳,获得10
1秒前
Roman完成签到,获得积分10
2秒前
slin_sjtu发布了新的文献求助10
4秒前
周周发布了新的文献求助20
4秒前
小党完成签到,获得积分10
4秒前
5秒前
昏睡的白桃完成签到,获得积分10
5秒前
小宇OvO发布了新的文献求助10
6秒前
jiaolulu发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
真的不想干活了完成签到,获得积分10
10秒前
美丽的依琴完成签到,获得积分10
11秒前
Xin完成签到,获得积分10
17秒前
Aurora.H完成签到,获得积分10
20秒前
20秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
duckspy发布了新的文献求助10
23秒前
23秒前
23秒前
xiaowan完成签到,获得积分10
24秒前
Terry完成签到,获得积分10
25秒前
张张张哈哈哈完成签到,获得积分10
25秒前
Research完成签到 ,获得积分10
25秒前
称心采枫完成签到 ,获得积分0
26秒前
26秒前
新新新新新发顶刊完成签到 ,获得积分10
27秒前
L3完成签到,获得积分10
28秒前
我是科研小能手完成签到,获得积分10
28秒前
风中的小丸子完成签到,获得积分10
29秒前
29秒前
时尚俊驰发布了新的文献求助10
30秒前
30秒前
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022