Comparing effects of uncertainty in predictions of local and pantropical allometric models on large-area estimates for mean aboveground biomass per unit area

泛热带 异速滴定 生物量(生态学) 单位(环理论) 环境科学 统计 生态学 数学 生物 数学教育
作者
Laio Zimermann Oliveira,Ronald E. McRoberts,Alexander Christian Vibrans,Veraldo Liesenberg,Heitor Felippe Uller
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpaf008
摘要

Abstract In the absence of regional/local allometric models of known accuracy, pantropical models (PMs) are often employed for predicting aboveground biomass (AGB) for trees growing in (sub)tropical forests. Using accurate models for a given population is crucial to increase accuracy and reduce uncertainty in estimates for mean AGB per unit area. This study evaluated the effects of local models (LMs) and PMs on large-area estimates for mean AGB (Mg ha$^{-1}$) in the Brazilian subtropical evergreen rainforest. In addition to the uncertainty due to sampling variability in the forest inventory dataset, uncertainty in model parameter estimates and residual variability were incorporated into standard errors (SEs) of the estimator of the mean through a Monte Carlo scheme. Generally, estimates for mean AGB were somewhat similar regardless of the model. Estimates for mean AGB obtained using a PM constructed with moist forest sites only and an LM were not statistically significantly different at significance level of 0.05. However, substantially less precise estimates for mean AGB were obtained with LMs constructed with 50 sample trees or fewer relative to an LM constructed with 105 trees and PMs, mainly as an indirect effect of greater uncertainty in model parameter estimates. When correlation among tree observations on the same sample location was accounted for when fitting the PMs, SEs increased as much as 26%. Further, although the PMs were constructed with many-fold larger datasets, they yielded less precise estimates for mean AGB than the LM constructed with 105 trees. Nevertheless, the evaluated PMs may still be regarded as accurate for the studied population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小霸王发布了新的文献求助10
刚刚
1秒前
呵呵贺哈完成签到 ,获得积分10
2秒前
3秒前
zlLt发布了新的文献求助10
3秒前
A.y.w完成签到,获得积分10
3秒前
jianguo完成签到,获得积分10
4秒前
nEGpw8完成签到,获得积分20
4秒前
Fff完成签到 ,获得积分10
4秒前
5秒前
zzh_wk完成签到,获得积分10
6秒前
7秒前
7秒前
汉堡包应助缓慢的思烟采纳,获得10
8秒前
赘婿应助望其项背采纳,获得30
9秒前
10秒前
stars发布了新的文献求助10
11秒前
小霸王完成签到,获得积分10
11秒前
科研通AI5应助SppikeFPS采纳,获得10
11秒前
小屋完成签到,获得积分10
11秒前
航十二完成签到,获得积分10
13秒前
WQY发布了新的文献求助10
13秒前
魏某某发布了新的文献求助10
15秒前
梦鱼完成签到,获得积分10
16秒前
16秒前
wanci应助LZY采纳,获得10
17秒前
华仔应助学术五车采纳,获得10
18秒前
Komorebi完成签到,获得积分10
18秒前
WH完成签到,获得积分10
19秒前
dd完成签到 ,获得积分10
19秒前
Ava应助MissXia采纳,获得10
19秒前
关心完成签到,获得积分10
19秒前
19秒前
bbf8906完成签到,获得积分10
22秒前
22秒前
幸福的秋烟完成签到,获得积分10
23秒前
布响丸辣发布了新的文献求助10
23秒前
林安笙完成签到,获得积分10
23秒前
swy发布了新的文献求助10
25秒前
5266完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544452
求助须知:如何正确求助?哪些是违规求助? 3976555
关于积分的说明 12314408
捐赠科研通 3644598
什么是DOI,文献DOI怎么找? 2007103
邀请新用户注册赠送积分活动 1042519
科研通“疑难数据库(出版商)”最低求助积分说明 931602