Comparing effects of uncertainty in predictions of local and pantropical allometric models on large-area estimates for mean aboveground biomass per unit area

泛热带 异速滴定 生物量(生态学) 单位(环理论) 环境科学 统计 生态学 数学 生物 数学教育
作者
Laio Zimermann Oliveira,Ronald E. McRoberts,Alexander Christian Vibrans,Veraldo Liesenberg,Heitor Felippe Uller
出处
期刊:Forestry [Oxford University Press]
标识
DOI:10.1093/forestry/cpaf008
摘要

Abstract In the absence of regional/local allometric models of known accuracy, pantropical models (PMs) are often employed for predicting aboveground biomass (AGB) for trees growing in (sub)tropical forests. Using accurate models for a given population is crucial to increase accuracy and reduce uncertainty in estimates for mean AGB per unit area. This study evaluated the effects of local models (LMs) and PMs on large-area estimates for mean AGB (Mg ha$^{-1}$) in the Brazilian subtropical evergreen rainforest. In addition to the uncertainty due to sampling variability in the forest inventory dataset, uncertainty in model parameter estimates and residual variability were incorporated into standard errors (SEs) of the estimator of the mean through a Monte Carlo scheme. Generally, estimates for mean AGB were somewhat similar regardless of the model. Estimates for mean AGB obtained using a PM constructed with moist forest sites only and an LM were not statistically significantly different at significance level of 0.05. However, substantially less precise estimates for mean AGB were obtained with LMs constructed with 50 sample trees or fewer relative to an LM constructed with 105 trees and PMs, mainly as an indirect effect of greater uncertainty in model parameter estimates. When correlation among tree observations on the same sample location was accounted for when fitting the PMs, SEs increased as much as 26%. Further, although the PMs were constructed with many-fold larger datasets, they yielded less precise estimates for mean AGB than the LM constructed with 105 trees. Nevertheless, the evaluated PMs may still be regarded as accurate for the studied population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qi齐发布了新的文献求助10
刚刚
刚刚
8R60d8应助小超人采纳,获得10
1秒前
JJ完成签到,获得积分10
1秒前
2秒前
丘比特应助1551采纳,获得10
2秒前
3秒前
Ramy发布了新的文献求助10
3秒前
TIAN完成签到,获得积分20
3秒前
4秒前
任浩发布了新的文献求助10
4秒前
4秒前
直率如凡发布了新的文献求助10
5秒前
路老师完成签到,获得积分10
5秒前
刘浩然发布了新的文献求助10
6秒前
哈机密南北撸多完成签到,获得积分10
7秒前
7秒前
7秒前
哎嘿发布了新的文献求助10
8秒前
NiLou发布了新的文献求助10
8秒前
丘比特应助cc采纳,获得10
8秒前
快逃完成签到,获得积分10
8秒前
di发布了新的文献求助10
9秒前
9秒前
9秒前
海峰荣发布了新的文献求助10
9秒前
9秒前
余姓懒完成签到,获得积分10
9秒前
有魅力的超短裙完成签到,获得积分10
10秒前
jonghuang发布了新的文献求助10
10秒前
叶子发布了新的文献求助10
12秒前
浮游应助小超人采纳,获得10
12秒前
13秒前
feifei发布了新的文献求助10
14秒前
二三发布了新的文献求助10
14秒前
Owen应助认真的小丸子采纳,获得10
14秒前
15秒前
天天快乐应助yrd采纳,获得10
16秒前
kingwill应助xmz采纳,获得20
16秒前
leoott完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708