已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ground-truth-calibrated onshore and offshore subsurface infrastructure image from deep-learning-based 3D inversion of magnetic data

海底管道 反演(地质) 基本事实 地质学 地球物理学 人工智能 遥感 地震学 计算机科学 海洋学 构造学
作者
Souvik Mukherjee,Jacques Yves Guigné,Gary N. Young,Santi Adavani,Kevin Kennelley,Dillon Hoffmann,Harshit Shukla,Ronald S. Bell,William N. Barkhouse
出处
期刊:The leading edge [Society of Exploration Geophysicists]
卷期号:44 (3): 187-205
标识
DOI:10.1190/tle44030187.1
摘要

In this study, we demonstrate the application of deep-learning-based 3D inversion of magnetic data to image subsurface infrastructure. We highlight results from two case studies: an onshore survey at Texas A&M University's Rellis Campus site and an offshore survey in the northern Gulf of Mexico (GOM), off the coast of Louisiana. The onshore case utilized drone-acquired magnetic data to map buried utilities before construction. The offshore case employed a boat-towed magnetometer approximately 3.5 m above the seafloor to locate oil well conductors disrupted by Hurricane Ivan in 2004 and presently buried under 35 to 45 m of sediment. The inversion results at the Rellis site were validated against excavation data, revealing strong agreement in target location and depth (within 17 cm). In the GOM survey, the artificial intelligence (AI)-driven inversion successfully extended conductor imaging beyond the limits of acoustic methods, providing critical information on conductor geometry near the well conductor bay. This work highlights the effectiveness of AI-driven inversion techniques in enhancing subsurface imaging, offering cost-effective and scalable solutions for applications in utility mapping, environmental monitoring, and hazard assessment. The results demonstrate that AI-based workflows can be adapted to various geophysical settings, providing new opportunities for high-resolution imaging of complex subsurface features in onshore and offshore environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助害羞的纸鹤采纳,获得10
2秒前
4秒前
隐形曼青应助Qq采纳,获得10
4秒前
bkagyin应助大力的无声采纳,获得10
9秒前
9秒前
咕咕发布了新的文献求助10
10秒前
13秒前
ding应助Ruhe采纳,获得10
15秒前
bkagyin应助务实一斩采纳,获得10
16秒前
Wink14551发布了新的文献求助10
16秒前
16秒前
李大帅完成签到,获得积分10
20秒前
Qq完成签到,获得积分20
21秒前
21秒前
23秒前
23秒前
TQL完成签到 ,获得积分10
23秒前
搜集达人应助Wink14551采纳,获得10
25秒前
微微完成签到 ,获得积分10
26秒前
ceeray23发布了新的文献求助200
26秒前
27秒前
28秒前
无花果应助静待花开采纳,获得10
29秒前
29秒前
31秒前
31秒前
务实一斩发布了新的文献求助10
33秒前
33秒前
33秒前
33秒前
lsh1996发布了新的文献求助10
35秒前
35秒前
坦率的松完成签到 ,获得积分10
35秒前
木兮发布了新的文献求助10
36秒前
Ruhe发布了新的文献求助10
36秒前
Anesthesialy发布了新的文献求助10
36秒前
Ivan发布了新的文献求助10
37秒前
风不言喻发布了新的文献求助10
37秒前
40秒前
饱满破茧发布了新的文献求助10
46秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538812
求助须知:如何正确求助?哪些是违规求助? 3116497
关于积分的说明 9325545
捐赠科研通 2814404
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136