geneRNIB: a living benchmark for gene regulatory network inference

推论 水准点(测量) 基因调控网络 计算生物学 基因 计算机科学 生物 遗传学 人工智能 基因表达 地理 地图学
作者
Jalil Nourisa,Antoine Passemiers,Marco Stock,Berit Zeller‐Plumhoff,Robrecht Cannoodt,Christian Arnold,Alexander Tong,Jason Hartford,Antonio Scialdone,Yves Moreau,Yang Eric Li,Malte D. Luecken
标识
DOI:10.1101/2025.02.25.640181
摘要

Gene regulatory networks (GRNs) underpin cellular identity and function, playing a key role in health and disease. Despite various benchmarking efforts, existing studies remain limited in the number of GRN inference methods, datasets, and evaluation metrics. The absence of a universally accepted ground truth further complicates the evaluation, requiring continuous refinement of benchmarking strategies. In addition, regulatory interactions are highly context-specific and vary between perturbations, cell types, tissues, and organisms. However, current benchmarks do not account for this complexity, limiting their applicability in personalized medicine. Here, we introduce geneRNIB, a comprehensive GRN benchmarking framework built on three key principles: context-specific evaluation, continuous integration, and holistic assessment in the absence of a true reference network. geneRNIB enables the seamless incorporation of new algorithms, datasets, and evaluation metrics to reflect ongoing developments. In the current version, we systematically integrated and assessed ten GRN inference methods, spanning single- and multiomics approaches across five diverse datasets including thousands of perturbation scenarios. We introduced eight novel metrics specifically designed to assess context-specific causal inference. Our findings indicate that simple models with fewer assumptions often outperformed more complex pipelines. Notably, gene expression-based correlation algorithms yielded better results than more advanced approaches incorporating prior datasets or pre-trained on large datasets. In addition, we identified several potential factors that influence the performance of GRN inference and offered actionable guidelines for the future development of the method. By addressing these critical limitations in existing benchmarks, geneRNIB advances GRN research and fosters progress toward personalized medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ArthurWaley完成签到,获得积分10
刚刚
amy发布了新的文献求助10
1秒前
快来拾糖发布了新的文献求助10
1秒前
木冉发布了新的文献求助10
1秒前
Yangaaa发布了新的文献求助10
1秒前
kd完成签到,获得积分10
2秒前
3秒前
丂枧完成签到 ,获得积分10
3秒前
wuxunxun2015发布了新的文献求助10
3秒前
4秒前
Aster完成签到,获得积分20
4秒前
王小小发布了新的文献求助10
4秒前
黄贵群完成签到,获得积分20
5秒前
科研通AI5应助hahah采纳,获得10
5秒前
yzy完成签到 ,获得积分10
5秒前
kingwill应助gege采纳,获得20
5秒前
ding应助复杂的方盒采纳,获得10
5秒前
小马甲应助复杂的方盒采纳,获得10
5秒前
共享精神应助复杂的方盒采纳,获得10
5秒前
SciGPT应助复杂的方盒采纳,获得10
5秒前
英姑应助复杂的方盒采纳,获得10
5秒前
小二郎应助复杂的方盒采纳,获得10
5秒前
Brad_AN应助复杂的方盒采纳,获得10
6秒前
英俊的铭应助复杂的方盒采纳,获得10
6秒前
李爱国应助复杂的方盒采纳,获得10
6秒前
我是老大应助yi采纳,获得10
6秒前
CodeCraft应助复杂的方盒采纳,获得10
6秒前
Otto Curious发布了新的文献求助50
6秒前
6秒前
7秒前
7秒前
wxh发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
hfy完成签到,获得积分10
9秒前
陈圈圈发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543314
求助须知:如何正确求助?哪些是违规求助? 3120695
关于积分的说明 9343843
捐赠科研通 2818781
什么是DOI,文献DOI怎么找? 1549765
邀请新用户注册赠送积分活动 722233
科研通“疑难数据库(出版商)”最低求助积分说明 713090