Transcriptome and metabolome analysis reveal the mechanisms of iron absorption differences in apple rootstocks under alkaline condition

代谢组 黄化 转录组 生物 缺铁 黄化 小桶 生物化学 铁质 叶绿素 植物 化学 基因 基因表达 医学 内科学 有机化学 代谢物 贫血
作者
Yanmei Li,Peng Chen,Fanwei Zeng,Han Wang,Weifeng Ma,Aiyuan Wu,Zonghuan Ma,Juan Mao,Baihong Chen
出处
期刊:Physiologia Plantarum [Wiley]
卷期号:177 (1)
标识
DOI:10.1111/ppl.70134
摘要

Iron (Fe) is an essential micronutrient for plant growth and development. Fe deficiency leads to growth restriction, developmental disorders, chlorosis, and yield loss of fruit trees. This study investigated the molecular and biochemical mechanisms underlying the differences in Fe absorption among various apple rootstocks under alkaline conditions. Results showed that 'Oregon Spur II' grafted onto Qingzhen No.2 (OS/Q2) exhibited foliage etiolation, while 'Oregon Spur II' grafted onto Qingzhen No.1 (OS/Q1) did not display such etiolation under alkaline conditions. Physiological experiments revealed that total Fe, ferrous Fe, and chlorophyll content in OS/Q2 were significantly lower than those in OS/Q1, whereas the Fe reductase activity in OS/Q2 was higher than that in OS/Q1. Additionally, a total of 7,025 and 9,102 differentially expressed genes (DEGs), including 488 transcription factors (TFs), were identified in OS/Q1L vs. OS/Q2L and OS/Q1R vs. OS/Q2R, respectively. Subsequently, the pathways associated with "phenylpropanoid biosynthesis", "plant hormone signal transduction", "hydrogen ion export across plasma membrane", "heme binding", and "iron binding" were identified as critical for responding to Fe deficiency under alkaline conditions. Furthermore, a total of 244 differentially accumulated metabolites (DAMs) were identified in OS/Q1R vs. OS/Q2R. A combined analysis of the transcriptome and metabolome revealed that "ABC transporters", "biosynthesis of amino acids", and "carbon fixation in photosynthetic organisms" were significantly overrepresented in the KEGG pathways of both DEGs and DAMs. These newly acquired genes and metabolites involved in Fe metabolism will enhance our capacity to employ genetic engineering technologies to maintain Fe homeostasis in plants in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助虚幻的青槐采纳,获得10
1秒前
2秒前
科研通AI5应助超级铃铛采纳,获得10
3秒前
111发布了新的文献求助10
5秒前
橙子慢慢来完成签到,获得积分10
5秒前
6秒前
完美世界应助xu采纳,获得10
8秒前
露露发布了新的文献求助10
8秒前
10秒前
大个应助风中亦玉采纳,获得10
10秒前
禾薇完成签到,获得积分10
12秒前
huahuahua发布了新的文献求助30
13秒前
13秒前
伊丽莎白完成签到,获得积分10
14秒前
研友_VZG7GZ应助李同学采纳,获得10
15秒前
wpie99发布了新的文献求助30
20秒前
wangmou完成签到,获得积分10
20秒前
科研通AI5应助江谷林采纳,获得10
24秒前
24秒前
Hello应助禾薇采纳,获得10
25秒前
科研通AI5应助踏实的芸遥采纳,获得10
26秒前
科研通AI5应助蒹葭采纳,获得10
27秒前
李同学发布了新的文献求助10
28秒前
28秒前
杭永程完成签到 ,获得积分10
31秒前
31秒前
博弈春秋完成签到,获得积分10
34秒前
大林发布了新的文献求助10
34秒前
35秒前
37秒前
Crystal完成签到 ,获得积分10
37秒前
海阔天空完成签到,获得积分0
37秒前
江谷林完成签到,获得积分10
39秒前
39秒前
39秒前
39秒前
李同学完成签到,获得积分10
39秒前
在水一方应助竹心蜓采纳,获得10
39秒前
风采完成签到,获得积分20
40秒前
烟花应助小鲤瑜跃龙门采纳,获得10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423