Skin lesion segmentation using two-phase cross-domain transfer learning framework

学习迁移 分割 可解释性 计算机科学 人工智能 深度学习 一般化 机器学习 模式识别(心理学) 特征(语言学) 领域(数学分析) 图像分割 数学 语言学 数学分析 哲学
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107408-107408 被引量:19
标识
DOI:10.1016/j.cmpb.2023.107408
摘要

Deep learning (DL) models have been used for medical imaging for a long time but they did not achieve their full potential in the past because of insufficient computing power and scarcity of training data. In recent years, we have seen substantial growth in DL networks because of improved technology and an abundance of data. However, previous studies indicate that even a well-trained DL algorithm may struggle to generalize data from multiple sources because of domain shifts. Additionally, ineffectiveness of basic data fusion methods, complexity of segmentation target and low interpretability of current DL models limit their use in clinical decisions. To meet these challenges, we present a new two-phase cross-domain transfer learning system for effective skin lesion segmentation from dermoscopic images.Our system is based on two significant technical inventions. We examine a two- phase cross-domain transfer learning approach, including model-level and data-level transfer learning, by fine-tuning the system on two datasets, MoleMap and ImageNet. We then present nSknRSUNet, a high-performing DL network, for skin lesion segmentation using broad receptive fields and spatial edge attention feature fusion. We examine the trained model's generalization capabilities on skin lesion segmentation to quantify these two inventions. We cross-examine the model using two skin lesion image datasets, MoleMap and HAM10000, obtained from varied clinical contexts.At data-level transfer learning for the HAM10000 dataset, the proposed model obtained 94.63% of DSC and 99.12% accuracy. In cross-examination at data-level transfer learning for the Molemap dataset, the proposed model obtained 93.63% of DSC and 97.01% of accuracy.Numerous experiments reveal that our system produces excellent performance and improves upon state-of-the-art methods on both qualitative and quantitative measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助哭泣的翠丝采纳,获得10
刚刚
刚刚
星辉斑斓完成签到,获得积分10
刚刚
1秒前
酷酷的盼海完成签到,获得积分10
1秒前
2秒前
b23tian关注了科研通微信公众号
2秒前
宫鹏涛完成签到,获得积分10
2秒前
Jack发布了新的文献求助10
2秒前
2秒前
3秒前
careS发布了新的文献求助30
3秒前
大模型应助贤惠的鼠标采纳,获得10
4秒前
Hollow完成签到,获得积分10
4秒前
4秒前
昵称发布了新的文献求助20
4秒前
5秒前
尊敬的怀绿完成签到,获得积分10
5秒前
bk_tian完成签到,获得积分10
5秒前
5秒前
6秒前
魏芸芸发布了新的文献求助10
6秒前
6秒前
八杯水发布了新的文献求助10
6秒前
可靠的南露完成签到,获得积分10
6秒前
6秒前
万能图书馆应助Issac01采纳,获得10
6秒前
健忘的芷荷完成签到,获得积分10
7秒前
青秋鱼罐头完成签到,获得积分10
7秒前
8秒前
书包王发布了新的文献求助10
8秒前
9秒前
fcyyc完成签到,获得积分10
9秒前
9秒前
无脚鸟完成签到,获得积分10
9秒前
Res_M发布了新的文献求助10
9秒前
知足常乐完成签到 ,获得积分10
9秒前
完美世界应助Liang采纳,获得10
9秒前
10秒前
平淡的煎饼完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406