Skin lesion segmentation using two-phase cross-domain transfer learning framework

学习迁移 分割 可解释性 计算机科学 人工智能 深度学习 一般化 机器学习 模式识别(心理学) 特征(语言学) 领域(数学分析) 图像分割 数学 语言学 数学分析 哲学
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:231: 107408-107408 被引量:15
标识
DOI:10.1016/j.cmpb.2023.107408
摘要

Deep learning (DL) models have been used for medical imaging for a long time but they did not achieve their full potential in the past because of insufficient computing power and scarcity of training data. In recent years, we have seen substantial growth in DL networks because of improved technology and an abundance of data. However, previous studies indicate that even a well-trained DL algorithm may struggle to generalize data from multiple sources because of domain shifts. Additionally, ineffectiveness of basic data fusion methods, complexity of segmentation target and low interpretability of current DL models limit their use in clinical decisions. To meet these challenges, we present a new two-phase cross-domain transfer learning system for effective skin lesion segmentation from dermoscopic images.Our system is based on two significant technical inventions. We examine a two- phase cross-domain transfer learning approach, including model-level and data-level transfer learning, by fine-tuning the system on two datasets, MoleMap and ImageNet. We then present nSknRSUNet, a high-performing DL network, for skin lesion segmentation using broad receptive fields and spatial edge attention feature fusion. We examine the trained model's generalization capabilities on skin lesion segmentation to quantify these two inventions. We cross-examine the model using two skin lesion image datasets, MoleMap and HAM10000, obtained from varied clinical contexts.At data-level transfer learning for the HAM10000 dataset, the proposed model obtained 94.63% of DSC and 99.12% accuracy. In cross-examination at data-level transfer learning for the Molemap dataset, the proposed model obtained 93.63% of DSC and 97.01% of accuracy.Numerous experiments reveal that our system produces excellent performance and improves upon state-of-the-art methods on both qualitative and quantitative measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tracy完成签到,获得积分10
刚刚
1秒前
完美世界应助王wangWANG采纳,获得10
1秒前
隐形的巴豆完成签到,获得积分10
1秒前
科目三应助dinghaifeng采纳,获得10
2秒前
manman发布了新的文献求助20
2秒前
徐一羊完成签到 ,获得积分10
2秒前
爆裂王发布了新的文献求助30
3秒前
甜甜玫瑰应助赫灵竹采纳,获得10
3秒前
xinxinwen完成签到,获得积分10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI2S应助loading采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
酷波er应助我爱蓝胖子采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
完美世界应助爱云采纳,获得10
6秒前
6秒前
woshihu完成签到,获得积分10
6秒前
8秒前
sun2发布了新的文献求助10
8秒前
冷静的肖恩完成签到 ,获得积分10
8秒前
10秒前
10秒前
Ava应助悦耳的鸭子采纳,获得10
10秒前
Yifan完成签到,获得积分10
10秒前
王华瑞发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293040
求助须知:如何正确求助?哪些是违规求助? 2929220
关于积分的说明 8440844
捐赠科研通 2601358
什么是DOI,文献DOI怎么找? 1419735
科研通“疑难数据库(出版商)”最低求助积分说明 660370
邀请新用户注册赠送积分活动 643045