清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Skin lesion segmentation using two-phase cross-domain transfer learning framework

学习迁移 分割 可解释性 计算机科学 人工智能 深度学习 一般化 机器学习 模式识别(心理学) 特征(语言学) 领域(数学分析) 图像分割 数学 数学分析 语言学 哲学
作者
Meghana Karri,Chandra Sekhara Rao Annavarapu,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:231: 107408-107408 被引量:19
标识
DOI:10.1016/j.cmpb.2023.107408
摘要

Deep learning (DL) models have been used for medical imaging for a long time but they did not achieve their full potential in the past because of insufficient computing power and scarcity of training data. In recent years, we have seen substantial growth in DL networks because of improved technology and an abundance of data. However, previous studies indicate that even a well-trained DL algorithm may struggle to generalize data from multiple sources because of domain shifts. Additionally, ineffectiveness of basic data fusion methods, complexity of segmentation target and low interpretability of current DL models limit their use in clinical decisions. To meet these challenges, we present a new two-phase cross-domain transfer learning system for effective skin lesion segmentation from dermoscopic images.Our system is based on two significant technical inventions. We examine a two- phase cross-domain transfer learning approach, including model-level and data-level transfer learning, by fine-tuning the system on two datasets, MoleMap and ImageNet. We then present nSknRSUNet, a high-performing DL network, for skin lesion segmentation using broad receptive fields and spatial edge attention feature fusion. We examine the trained model's generalization capabilities on skin lesion segmentation to quantify these two inventions. We cross-examine the model using two skin lesion image datasets, MoleMap and HAM10000, obtained from varied clinical contexts.At data-level transfer learning for the HAM10000 dataset, the proposed model obtained 94.63% of DSC and 99.12% accuracy. In cross-examination at data-level transfer learning for the Molemap dataset, the proposed model obtained 93.63% of DSC and 97.01% of accuracy.Numerous experiments reveal that our system produces excellent performance and improves upon state-of-the-art methods on both qualitative and quantitative measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的师完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
阳光的丹雪完成签到,获得积分10
10秒前
11秒前
灿烂而孤独的八戒完成签到 ,获得积分10
20秒前
31秒前
1分钟前
方白秋完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
1分钟前
wrl2023发布了新的文献求助10
1分钟前
sqc发布了新的文献求助10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
临兵者完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
开放青旋应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
勤奋流沙完成签到 ,获得积分10
2分钟前
朴素海亦完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
小白菜完成签到,获得积分10
3分钟前
3分钟前
袁青寒完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
TEMPO发布了新的文献求助10
4分钟前
魔术师完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210