Mapping rapeseed in China during 2017-2021 using Sentinel data: an automated approach integrating rule-based sample generation and a one-class classifier (RSG-OC)

油菜籽 土地覆盖 分类器(UML) 样品(材料) 计算机科学 人工智能 地理 遥感 土地利用 农学 生物 生态学 色谱法 化学
作者
Yunze Zang,Yuean Qiu,Xuehong Chen,Jin Chen,Wei Yang,Yifei Liu,Longkang Peng,Miaogen Shen,Xin Cao
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:60 (1) 被引量:17
标识
DOI:10.1080/15481603.2022.2163576
摘要

Rapeseed mapping is important for national food security and government regulation of land use. Various methods, including empirical index-based and machine learning-based methods, have been developed to identify rapeseed using remote sensing. Empirical index-based methods commonly employed empirically designed indices to enhance rapeseed's bright yellow spectral feature during the flowering period, which is straightforward to implement. Unfortunately, the heavy cloud cover in the flowering period of China would lead to serious omission errors; and the required flowering period varies spatially and yearly, which often cannot be acquired accurately. Machine learning-based methods mitigate the reliance on clear observations during the flowering period by inputting all-season imagery to adaptively learn features. However, it is difficult to collect sufficient samples across all of China considering the large intraclass variation in both land cover types of rapeseed and non-rapeseed. This study proposed an automated rapeseed mapping approach integrating rule-based sample generation and a one-class classifier (RSG-OC) to overcome the shortcomings of the two types of methods. First, a set of sample selection rules based on empirical indices of rapeseed were developed to automatically generate samples in cloud-free pixels during the predicted flowering period throughout China. Second, all available features composited based on the rapeseed phenological calendar were used for classification to eliminate the phenology differences in different regions. Third, a specific sample augmentation that removes the observation in the flowering period was employed to improve the generalization to the pixels without cloud-free observation in the flowering period. Finally, to avoid the need for diverse samples of nonrapeseed classes, a typical one-class classifier, positive unlabeled learning implemented by random forest (PUL-RF) trained by the generated samples, was applied to map rapeseed. With the proposed method, China rapeseed was mapped at 20 m resolution during 2017–2021 based on the Google Earth Engine (GEE). Validation on six typical rapeseed planting areas demonstrates that RSG-OC achieves an average accuracy of 94.90%. In comparison, the average accuracy of the other methods ranged from 83.33% to 88.25%, all of which were poorer than the proposed method. Additional experiments show that the performance of RSG-OC was not sensitive to cloud contamination, inaccurate predicted flowering time and the threshold of sample selection rule. These results indicate that the rapeseed maps produced in China are overall reliable and that the proposed method is an effective and robust method for annual rapeseed mapping across China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuyyuan完成签到 ,获得积分10
2秒前
小刘同学完成签到,获得积分10
4秒前
clxgene完成签到,获得积分10
6秒前
XXGG完成签到 ,获得积分10
16秒前
kanong完成签到,获得积分0
20秒前
star完成签到,获得积分10
20秒前
小白加油完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
高雍发布了新的文献求助10
26秒前
26秒前
天天开心完成签到 ,获得积分0
32秒前
111完成签到 ,获得积分10
32秒前
wuqs发布了新的文献求助10
32秒前
37秒前
久晓完成签到 ,获得积分10
38秒前
LIJIngcan完成签到 ,获得积分10
42秒前
笑点低的铁身完成签到 ,获得积分10
43秒前
47秒前
持卿应助ceeray23采纳,获得30
47秒前
我很好完成签到 ,获得积分10
50秒前
现代小丸子完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
1分钟前
gf完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
魔幻大叔完成签到 ,获得积分10
1分钟前
搜集达人应助葛大爷采纳,获得10
1分钟前
hhhm完成签到,获得积分10
1分钟前
xiaobai123456完成签到,获得积分10
1分钟前
elsa622完成签到 ,获得积分10
1分钟前
1分钟前
hhhm发布了新的文献求助10
1分钟前
genova完成签到,获得积分10
1分钟前
wuyoung发布了新的文献求助10
1分钟前
蔡从安完成签到,获得积分20
1分钟前
高雍完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高速旋转老沁完成签到 ,获得积分10
1分钟前
wuyoung完成签到,获得积分10
1分钟前
画龙点睛完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615564
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575