A modified weighted mean of vectors optimizer for Chronic Kidney disease classification

计算机科学 早熟收敛 肾脏疾病 人工智能 算法 粒子群优化 医学 内科学
作者
Essam H. Houssein,Awny Sayed
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106691-106691 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106691
摘要

Chronic kidney Disease (CKD), also known as chronic renal disease, is an illness that affects the majority of adults and is defined by a progressive decrease in kidney function over time, particularly in those with diabetes and high blood pressure. Metaheuristic (MH) algorithms based machine learning classifiers have become reliable for medical treatment. The weIghted meaN oF vectOrs (INFO) is a recently developed MH but suffers from a fall into local optimal and slow convergence speed. Therefore, to improve INFO, a modified INFO (mINFO) with two enhancement strategies has been developed. The developed variant utilizes the Opposition-Based Learning (OBL) to improve the local search ability to avoid trapping into the local optimum, and the Dynamic Candidate Solution (DCS) is used to overcome the premature convergence problem in INFO and achieve the appropriate balance between exploration and exploitation ability. The performance of the proposed mINFO based on the k-Nearest Neighbor (kNN) classifier is evaluated on the complex CEC'22 test suite and applied to predict Chronic Kidney Disease (CKD) on datasets extracted from UCI. The statistical results revealed the superiority of mINFO compared with several well-known MH algorithms, including the Harris Hawks Optimization (HHO), the Hunger Games Search (HGS) algorithm, the Moth-Flame Optimization (MFO) algorithm, the Whale Optimization Algorithm (WOA), the Sine Cosine Algorithm (SCA), the Gradient-Based Optimizer (GBO), and the original INFO algorithm. According to our knowledge, this paper is the first of its sort to try employing the proposed mINFO for solving the CEC'22 test suite. Furthermore, the experimental results of mINFO-kNN for classifying two CKD datasets demonstrated its superiority with an overall classification accuracy of 93.17% on two CKD datasets over other competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenamy完成签到,获得积分10
3秒前
von完成签到,获得积分10
3秒前
感动葵阴完成签到,获得积分10
4秒前
独立卫生间完成签到,获得积分10
4秒前
小杨发布了新的文献求助10
4秒前
5秒前
风华正茂完成签到,获得积分10
5秒前
坟里唱情歌完成签到 ,获得积分10
5秒前
天天快乐应助沉默采纳,获得10
6秒前
6秒前
潇潇完成签到,获得积分10
6秒前
qiqiqiqiqi完成签到 ,获得积分10
7秒前
香蕉书竹完成签到,获得积分10
7秒前
Tokgo完成签到,获得积分10
8秒前
Dongjie完成签到,获得积分10
10秒前
秦时明月完成签到,获得积分10
11秒前
gjx完成签到 ,获得积分10
13秒前
爱听歌的寒香完成签到,获得积分10
13秒前
严念桃完成签到,获得积分10
14秒前
ForComposites完成签到,获得积分10
15秒前
健忘的伟宸完成签到,获得积分10
16秒前
min完成签到,获得积分20
16秒前
18秒前
小二郎应助李李李采纳,获得10
19秒前
Ya完成签到 ,获得积分10
20秒前
冷傲迎梦完成签到,获得积分10
20秒前
彩色的过客完成签到,获得积分10
21秒前
lcx完成签到,获得积分10
21秒前
SYLH应助alleyyy采纳,获得10
21秒前
谢谢谢谢谢m完成签到,获得积分10
22秒前
麻辣烫完成签到 ,获得积分10
22秒前
科研搬运工完成签到,获得积分10
23秒前
阳光的冬天完成签到,获得积分10
23秒前
唐落音完成签到,获得积分10
23秒前
hanliulaixi完成签到 ,获得积分10
24秒前
三十四画生完成签到 ,获得积分10
24秒前
li完成签到 ,获得积分10
24秒前
Ting完成签到,获得积分10
25秒前
阳光和煦轻风拂面完成签到 ,获得积分10
25秒前
Tianju完成签到,获得积分0
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455736
求助须知:如何正确求助?哪些是违规求助? 3051010
关于积分的说明 9023379
捐赠科研通 2739571
什么是DOI,文献DOI怎么找? 1502922
科研通“疑难数据库(出版商)”最低求助积分说明 694628
邀请新用户注册赠送积分活动 693432