Unsupervised Cross-Modal Hashing via Semantic Text Mining

计算机科学 散列函数 相似性(几何) 人工智能 模态(人机交互) 余弦相似度 局部敏感散列 图像检索 模式识别(心理学) 语义相似性 情态动词 情报检索 自然语言处理 数据挖掘 图像(数学) 哈希表 化学 计算机安全 高分子化学
作者
Rong-Cheng Tu,Xian-Ling Mao,Qinghong Lin,Wenjin Ji,Weize Qin,Wei Wei,Heyan Huang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8946-8957 被引量:21
标识
DOI:10.1109/tmm.2023.3243608
摘要

Cross-modal hashing has been widely used in multimedia retrieval tasks due to its fast retrieval speed and low storage cost. Recently, many deep unsupervised cross-modal hashing methods have been proposed to deal the unlabeled datasets. These methods usually construct an instance similarity matrix by fusing the image and text modality-specific similarity matrices as the guiding information to train the hashing networks. However, most of them directly use cosine similarities between the bag-of-words (BoW) vectors of text datapoints to define the text modality-specific similarity matrix, which fails to mine the semantic similarity information contained in the text modal datapoints and leads to the poor quality of the instance similarity matrix. To tackle the aforementioned problem, in this paper, we propose a novel Unsupervised Cross-modal Hashing via Semantic Text Mining, called UCHSTM. Specifically, UCHSTM first mines the correlations between the words of text datapoints. Then, UCHSTM constructs the text modality-specific similarity matrix for the training instances based on the mined correlations between their words. Next, UCHSTM fuses the image and text modality-specific similarity matrices as the final instance similarity matrix to guide the training of hashing model. Furthermore, during the process of training the hashing networks, a novel self-redefined-similarity loss is proposed to further correct some wrong defined similarities in the constructed instance similarity matrix, thereby further enhancing the retrieval performance. Extensive experiments on two widely used datasets show that the proposed UCHSTM outperforms state-of-the-art baselines on cross-modal retrieval tasks. We provide our source codes at: https://github.com/rongchengtu1/UCHTIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助mjj采纳,获得10
刚刚
mhl11应助橘柚采纳,获得10
1秒前
飞飞发布了新的文献求助10
1秒前
Gong完成签到,获得积分10
2秒前
刘菁发布了新的文献求助10
2秒前
领导范儿应助wyw采纳,获得10
4秒前
歌于心完成签到,获得积分10
4秒前
YY发布了新的文献求助10
5秒前
在水一方应助无限太阳采纳,获得10
6秒前
7秒前
Jasper应助雪落你看不见采纳,获得10
7秒前
7秒前
WuchangI完成签到,获得积分10
8秒前
冷傲迎梦发布了新的文献求助10
9秒前
无花果应助莉亚采纳,获得10
10秒前
ZY完成签到,获得积分10
10秒前
shenzhou9发布了新的文献求助10
11秒前
12秒前
13秒前
mjj发布了新的文献求助10
14秒前
爱静静应助阿枫采纳,获得10
14秒前
ss25完成签到,获得积分10
14秒前
YY完成签到,获得积分10
15秒前
16秒前
斯文败类应助小栗采纳,获得10
16秒前
JamesPei应助shua采纳,获得10
17秒前
17秒前
17秒前
xxx发布了新的文献求助10
18秒前
Orange应助AAAAA采纳,获得10
18秒前
wyw发布了新的文献求助10
18秒前
小马甲应助初心采纳,获得10
19秒前
Qv应助俊秀的海瑶采纳,获得10
19秒前
充电宝应助LHD采纳,获得10
19秒前
勇者小超人完成签到 ,获得积分10
19秒前
无限太阳发布了新的文献求助10
19秒前
小李要努力完成签到 ,获得积分10
20秒前
20秒前
Luminous1123发布了新的文献求助10
21秒前
莺时陆完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945353
关于积分的说明 8524838
捐赠科研通 2621121
什么是DOI,文献DOI怎么找? 1433353
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650388