亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-view underwater image enhancement method via embedded fusion mechanism

计算机科学 人工智能 自适应直方图均衡化 水下 保险丝(电气) 特征(语言学) 计算机视觉 频道(广播) 模式识别(心理学) 直方图 编码器 像素 图像(数学) 直方图均衡化 电气工程 哲学 工程类 地质学 操作系统 海洋学 语言学 计算机网络
作者
Jingchun Zhou,Jiaming Sun,Weishi Zhang,Zifan Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 105946-105946 被引量:169
标识
DOI:10.1016/j.engappai.2023.105946
摘要

Due to wavelength-dependent light absorption and scattering, underwater images often appear with a colour cast and blurry details. Most existing deep learning methods utilize a single input end-to-end network structure, which leads to a single form and content of the extracted features. To address these problems, we present a novel multi-feature underwater image enhancement method via embedded fusion mechanism (MFEF). We find that the quality of reconstruction results is affected by the quality of the input image to some extent, and use pre-processing to obtain high-quality images, which can improve the final reconstruction effect. We introduce the white balance (WB) algorithm and the contrast-limited adaptive histogram equalization (CLAHE) algorithm employing multiple path inputs to extract different forms of rich features in multiple views. To fully interact with features from multiple views, we design a multi-feature fusion (MFF) module to fuse derived image features. We suggest a novel pixel-weighted channel attention module (PCAM) that calibrates the detailed features of the degraded images using a weight matrix to give diverse weights to the encoded features. Ultimately, our network utilizes a fusion mechanism-based encoder and decoder that can be applied to restore various underwater scenes. In the UIEB dataset, our PSNR increased by 10.2% compared to that of Ucolor. Extensive experimental results demonstrate that the MFEF method outperforms other state-of-the-art underwater image enhancement methods in various real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Able完成签到,获得积分10
3秒前
6秒前
哈哈哈发布了新的文献求助10
8秒前
19秒前
码头整点薯条完成签到,获得积分10
20秒前
21秒前
21秒前
Owen应助科研通管家采纳,获得10
22秒前
24秒前
25秒前
观潮应助码头整点薯条采纳,获得10
30秒前
Jasper应助码头整点薯条采纳,获得10
35秒前
37秒前
42秒前
春宇浩然发布了新的文献求助10
49秒前
55秒前
roro熊完成签到 ,获得积分10
59秒前
HYQ完成签到 ,获得积分10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
1分钟前
义气丹雪应助JodieZhu采纳,获得30
1分钟前
1分钟前
糟糕的颜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Wei发布了新的文献求助50
1分钟前
wggggggy发布了新的文献求助10
1分钟前
脑洞疼应助春宇浩然采纳,获得10
1分钟前
学术交流高完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
义气丹雪应助JodieZhu采纳,获得30
3分钟前
爆米花应助无情的琳采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402