卤化物
钙钛矿(结构)
材料科学
化学物理
磁滞
半导体
光致发光
离子键合
金属
载流子
离子
纳米技术
光电子学
凝聚态物理
无机化学
化学
结晶学
物理
冶金
有机化学
作者
Satyaprasad P. Senanayak,Krishanu Dey,Ravichandran Shivanna,Weiwei Li,Dibyajyoti Ghosh,Youcheng Zhang,Bart Roose,Szymon J. Zelewski,Zahra Andaji‐Garmaroudi,William A. Wood,Nikhil Tiwale,Judith L. MacManus‐Driscoll,Richard H. Friend,Samuel D. Stranks,Henning Sirringhaus
出处
期刊:Nature Materials
[Springer Nature]
日期:2023-01-26
卷期号:22 (2): 216-224
被引量:65
标识
DOI:10.1038/s41563-022-01448-2
摘要
Investigation of the inherent field-driven charge transport behaviour of three-dimensional lead halide perovskites has largely remained challenging, owing to undesirable ionic migration effects near room temperature and dipolar disorder instabilities prevalent specifically in methylammonium-and-lead-based high-performing three-dimensional perovskite compositions. Here, we address both these challenges and demonstrate that field-effect transistors based on methylammonium-free, mixed metal (Pb/Sn) perovskite compositions do not suffer from ion migration effects as notably as their pure-Pb counterparts and reliably exhibit hysteresis-free p-type transport with a mobility reaching 5.4 cm2 V–1 s−1. The reduced ion migration is visualized through photoluminescence microscopy under bias and is manifested as an activated temperature dependence of the field-effect mobility with a low activation energy (~48 meV) consistent with the presence of the shallow defects present in these materials. An understanding of the long-range electronic charge transport in these inherently doped mixed metal halide perovskites will contribute immensely towards high-performance optoelectronic devices. The study of the inherent charge transport behaviour of 3D lead halide perovskite is challenging, owing to entanglement with ionic migration effects and dipolar disorder instabilities. Here, the authors circumvented both challenges and found that ion migration is much suppressed in mixed metal perovskite compositions relative to pure-Pb counterparts.
科研通智能强力驱动
Strongly Powered by AbleSci AI