Defect-Engineered Fe3C@NiCo2S4 Nanospike Derived from Metal–Organic Frameworks as an Advanced Electrode Material for Hybrid Supercapacitors

材料科学 超级电容器 阳极 法拉第效率 纳米技术 电解质 储能 氧化还原 化学工程 电极 碳纤维 电容 复合材料 功率(物理) 物理化学 化学 物理 量子力学 冶金 工程类 复合数
作者
Njemuwa Nwaji,Juyong Gwak,Mahendra Goddati,Hyo Jin Kang,Adewale Hammed Pasanaje,Abhishek Sharan,Nirpendra Singh,Jaebeom Lee
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (29): 34779-34788 被引量:25
标识
DOI:10.1021/acsami.3c04635
摘要

The rational synthesis and tailoring of metal–organic frameworks (MOFs) with multifunctional micro/nanoarchitectures have emerged as a subject of significant academic interest owing to their promising potential for utilization in advanced energy storage devices. Herein, we explored a category of three-dimensional (3D) NiCo2S4 nanospikes that have been integrated into a 1D Fe3C microarchitecture using a chemical surface transformation process. The resulting electrode materials, i.e., Fe3C@NiCo2S4 nanospikes, exhibit immense potential for utilization in high-performance hybrid supercapacitors. The nanospikes exhibit an elevated specific capacity (1894.2 F g–1 at 1 A g–1), enhanced rate capability (59%), and exceptional cycling stability (92.5% with 98.7% Coulombic efficiency) via a charge storage mechanism reminiscent of a battery. The augmented charge storage characteristics are attributed to the collaborative features of the active constituents, amplified availability of active sites inherent in the nanospikes, and the proficient redox chemical reactions of multi-metallic guest species. When using nitrogen-doped carbon nanofibers as the anode to fabricate hybrid supercapacitors, the device exhibits high energy and power densities of 62.98 Wh kg–1 and 6834 W kg–1, respectively, and shows excellent long-term cycling stability (95.4% after 5000 cycles), which affirms the significant potential of the proposed design for applications in hybrid supercapacitors. The DFT study showed the strong coupling of the oxygen from the electrolyte OH– with the metal atom of the nanostructures, resulting in high adsorption properties that facilitate the redox reaction kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song发布了新的文献求助30
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得30
1秒前
1秒前
Holland应助科研通管家采纳,获得30
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
科研通AI5应助秋刀鱼采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
小可爱完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Ava应助whisper采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
李健应助噗噗个噗采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助liuhll采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
rigelfalcon完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663580
求助须知:如何正确求助?哪些是违规求助? 3224069
关于积分的说明 9754981
捐赠科研通 2933971
什么是DOI,文献DOI怎么找? 1606503
邀请新用户注册赠送积分活动 758539
科研通“疑难数据库(出版商)”最低求助积分说明 734891