A Survey on Evaluation of Large Language Models

人气 工程伦理学 心理学 工程类 社会心理学
作者
Yupeng Chang,Xu Wang,Jindong Wang,Yuan-Hsuan Wu,Kaijie Zhu,Hao Chen,Linyi Yang,Xiaoyuan Yi,Cunxiang Wang,Yidong Wang,Wei Ye,Yue Zhang,Yen-Chi Chang,Philip S. Yu,Qiang Yang,Xuelian Xie
出处
期刊:Cornell University - arXiv 被引量:71
标识
DOI:10.48550/arxiv.2307.03109
摘要

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yufanhui应助fountainli采纳,获得10
刚刚
2秒前
短短发布了新的文献求助10
3秒前
于晨欣完成签到,获得积分10
6秒前
Akim应助虚幻青采纳,获得10
6秒前
浮生发布了新的文献求助10
7秒前
8秒前
可爱的函函应助卡拉尔德采纳,获得10
11秒前
12秒前
13秒前
独木舟发布了新的文献求助10
14秒前
shawn发布了新的文献求助10
16秒前
rosalieshi应助快乐元菱采纳,获得30
16秒前
19秒前
19秒前
20秒前
李崋壹完成签到 ,获得积分10
22秒前
牵猫散步的鱼完成签到,获得积分10
22秒前
隐形的半鬼完成签到 ,获得积分10
22秒前
23秒前
搜集达人应助独木舟采纳,获得10
23秒前
ChenXinde发布了新的文献求助10
25秒前
浮生发布了新的文献求助10
25秒前
白瓜完成签到 ,获得积分10
28秒前
29秒前
32秒前
zhang26xian完成签到,获得积分10
33秒前
自然紫山完成签到,获得积分10
33秒前
34秒前
xiaowang完成签到,获得积分10
34秒前
崔崔完成签到,获得积分10
37秒前
37秒前
ChenXinde发布了新的文献求助10
37秒前
子平完成签到 ,获得积分10
39秒前
酷波er应助shawn采纳,获得10
41秒前
优秀如雪完成签到,获得积分10
41秒前
41秒前
42秒前
浮生发布了新的文献求助10
42秒前
大个应助flyfish采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944883
关于积分的说明 8521919
捐赠科研通 2620620
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650134