Toward Surface Chemistry of Semiconductor Nanocrystals at an Atomic-Molecular Level

纳米晶 半导体 纳米技术 化学 材料科学 曲面(拓扑) 光电子学 几何学 数学
作者
Hairui Lei,Jiongzhao Li,Xueqian Kong,Linjun Wang,Xiaogang Peng
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (14): 1966-1977 被引量:24
标识
DOI:10.1021/acs.accounts.3c00185
摘要

ConspectusProperties of colloidal semiconductor nanocrystals with a single-crystalline structure are largely dominated by their surface structure at an atomic-molecular level, which is not well understood and controlled, due to a lack of experimental tools. However, if viewing the nanocrystal surface as three relatively independent spatial zones (i.e., crystal facets, inorganic−ligands interface, and ligands monolayer), we may approach an atomic-molecular level by coupling advanced experimental techniques and theoretical calculations.Semiconductor nanocrystals of interest are mainly based on compound semiconductors and mostly in two (or related) crystal structures, namely zinc-blende and wurtzite, which results in a small group of common low-index crystal facets. These low-index facets, from a surface-chemistry perspective, can be further classified into polar and nonpolar ones. Albeit far from being successful, the controlled formation of either polar or nonpolar facets is available for cadmium chalcogenide nanocrystals. Such facet-controlled systems offer a reliable basis for studying the inorganic–ligands interface. For convenience, here facet-controlled nanocrystals refer to a special class of shape-controlled ones, in which shape control is at an atomic level, instead of those with poorly defined facets (e.g., typical spheroids, nanorods, etc).Experimental and theoretical results reveal that type and bonding mode of surface ligands on nanocrystals is facet-specific and often beyond Green's classification (X-type, Z-type, and L-type). For instance, alkylamines bond strongly to the anion-terminated (0001) wurtzite facet in the form of ammonium ions, with three hydrogens of an ammonium ion bonding to three adjacent surface anion sites. With theoretically assessable experimental data, facet−ligands pairing can be identified using density functional theory (DFT) calculations. To make the pairing meaningful, possible forms of all potential ligands in the system need to be examined systematically, revealing the advantage of simple solution systems.Unlike the other two spatial zones, the ligands monolayer is disordered and dynamic at an atomic level. Thus, an understanding of the ligands monolayer on a molecular scale is sufficient for many cases. For colloidal nanocrystals stably coordinated with surface ligands, their solution properties are dictated by the ligands monolayer. Experimental and theoretical results reveal that solubility of a nanocrystal–ligands complex is an interplay between the intramolecular entropy of the ligands monolayer and intermolecular interactions of the ligands/nanocrystals. By introducing entropic ligands, solubility of nanocrystal-ligands complexes can be universally boosted by several orders of magnitude, i.e., up to >1 g/mL in typical organic solvents. Molecular environment in the pseudophase surrounding each nanocrystal plays a critical role in its chemical, photochemical, and photophysical properties.For some cases, such as the synthesis of high-quality nanocrystals, all three spatial zones of the nanocrystal surface must be taken into account. By optimizing nanocrystal surface at an atomic-molecular level, semiconductor nanocrystals with monodisperse size and facet structure become available recently through either direct synthesis or afterward facet reconstruction, implying full realization of their size-dependent properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hbutsj完成签到,获得积分10
2秒前
KK完成签到,获得积分10
4秒前
careyzhou发布了新的文献求助10
5秒前
中原第一深情完成签到,获得积分10
5秒前
小洪俊熙发布了新的文献求助10
6秒前
北望完成签到,获得积分20
6秒前
Lee完成签到 ,获得积分10
7秒前
科研狗完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
romeo发布了新的文献求助10
13秒前
妖孽宇完成签到,获得积分10
15秒前
简简单单完成签到,获得积分10
15秒前
550190946发布了新的文献求助10
15秒前
17秒前
111完成签到,获得积分10
17秒前
zhubin完成签到 ,获得积分10
17秒前
19秒前
田南松发布了新的文献求助10
22秒前
搬砖美少女完成签到,获得积分10
22秒前
nn发布了新的文献求助10
23秒前
7ohnny完成签到,获得积分10
24秒前
apckkk完成签到 ,获得积分10
26秒前
深情安青应助550190946采纳,获得10
27秒前
28秒前
29秒前
jbq完成签到 ,获得积分20
29秒前
YM完成签到,获得积分10
31秒前
生动柔发布了新的文献求助10
31秒前
大旭完成签到 ,获得积分10
32秒前
Fn完成签到 ,获得积分10
34秒前
zero完成签到,获得积分10
36秒前
瘦瘦谷兰完成签到,获得积分10
36秒前
zcz完成签到 ,获得积分10
37秒前
白嘉乐完成签到,获得积分10
38秒前
考研小白完成签到,获得积分10
38秒前
高妍纯完成签到 ,获得积分10
40秒前
42秒前
风中的丝袜完成签到,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022