Toward Surface Chemistry of Semiconductor Nanocrystals at an Atomic-Molecular Level

纳米晶 半导体 纳米技术 化学 材料科学 曲面(拓扑) 光电子学 几何学 数学
作者
Hairui Lei,Jiongzhao Li,Xueqian Kong,Linjun Wang,Xiaogang Peng
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (14): 1966-1977 被引量:24
标识
DOI:10.1021/acs.accounts.3c00185
摘要

ConspectusProperties of colloidal semiconductor nanocrystals with a single-crystalline structure are largely dominated by their surface structure at an atomic-molecular level, which is not well understood and controlled, due to a lack of experimental tools. However, if viewing the nanocrystal surface as three relatively independent spatial zones (i.e., crystal facets, inorganic−ligands interface, and ligands monolayer), we may approach an atomic-molecular level by coupling advanced experimental techniques and theoretical calculations.Semiconductor nanocrystals of interest are mainly based on compound semiconductors and mostly in two (or related) crystal structures, namely zinc-blende and wurtzite, which results in a small group of common low-index crystal facets. These low-index facets, from a surface-chemistry perspective, can be further classified into polar and nonpolar ones. Albeit far from being successful, the controlled formation of either polar or nonpolar facets is available for cadmium chalcogenide nanocrystals. Such facet-controlled systems offer a reliable basis for studying the inorganic–ligands interface. For convenience, here facet-controlled nanocrystals refer to a special class of shape-controlled ones, in which shape control is at an atomic level, instead of those with poorly defined facets (e.g., typical spheroids, nanorods, etc).Experimental and theoretical results reveal that type and bonding mode of surface ligands on nanocrystals is facet-specific and often beyond Green's classification (X-type, Z-type, and L-type). For instance, alkylamines bond strongly to the anion-terminated (0001) wurtzite facet in the form of ammonium ions, with three hydrogens of an ammonium ion bonding to three adjacent surface anion sites. With theoretically assessable experimental data, facet−ligands pairing can be identified using density functional theory (DFT) calculations. To make the pairing meaningful, possible forms of all potential ligands in the system need to be examined systematically, revealing the advantage of simple solution systems.Unlike the other two spatial zones, the ligands monolayer is disordered and dynamic at an atomic level. Thus, an understanding of the ligands monolayer on a molecular scale is sufficient for many cases. For colloidal nanocrystals stably coordinated with surface ligands, their solution properties are dictated by the ligands monolayer. Experimental and theoretical results reveal that solubility of a nanocrystal–ligands complex is an interplay between the intramolecular entropy of the ligands monolayer and intermolecular interactions of the ligands/nanocrystals. By introducing entropic ligands, solubility of nanocrystal-ligands complexes can be universally boosted by several orders of magnitude, i.e., up to >1 g/mL in typical organic solvents. Molecular environment in the pseudophase surrounding each nanocrystal plays a critical role in its chemical, photochemical, and photophysical properties.For some cases, such as the synthesis of high-quality nanocrystals, all three spatial zones of the nanocrystal surface must be taken into account. By optimizing nanocrystal surface at an atomic-molecular level, semiconductor nanocrystals with monodisperse size and facet structure become available recently through either direct synthesis or afterward facet reconstruction, implying full realization of their size-dependent properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
santiago完成签到,获得积分10
刚刚
1秒前
1秒前
pebble完成签到,获得积分10
2秒前
3秒前
梓i木完成签到 ,获得积分10
3秒前
天天快乐应助years采纳,获得10
4秒前
tutu发布了新的文献求助10
4秒前
5秒前
6秒前
百浪多息发布了新的文献求助10
6秒前
乐观的颦发布了新的文献求助10
7秒前
hahaha发布了新的文献求助10
7秒前
布布发布了新的文献求助10
8秒前
好运连连发布了新的文献求助10
8秒前
8秒前
9秒前
Summer完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Steve完成签到,获得积分10
11秒前
993494543完成签到,获得积分10
11秒前
Camellia发布了新的文献求助10
12秒前
YY发布了新的文献求助30
12秒前
Hello应助百浪多息采纳,获得10
12秒前
王肖宁发布了新的文献求助10
13秒前
13秒前
15秒前
秋澄完成签到 ,获得积分10
18秒前
19秒前
时光中的微粒完成签到 ,获得积分10
20秒前
lixiaorui发布了新的文献求助10
20秒前
科研通AI2S应助山沟沟采纳,获得10
21秒前
百浪多息完成签到,获得积分10
23秒前
LL完成签到 ,获得积分10
23秒前
呼呼呼完成签到,获得积分10
23秒前
今后应助多情山蝶采纳,获得10
23秒前
23秒前
Ming完成签到,获得积分10
24秒前
geats发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093