亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG SIGNAL-DRIVEN HUMAN–COMPUTER INTERACTION EMOTION RECOGNITION MODEL USING AN ATTENTIONAL NEURAL NETWORK ALGORITHM

计算机科学 脑电图 卷积神经网络 人工智能 模式识别(心理学) 卷积(计算机科学) 人工神经网络 机器学习 语音识别 心理学 精神科
作者
Chang Wei,Lijun Xu,Qing Yang,Y.L. Ma
出处
期刊:Journal of Mechanics in Medicine and Biology 卷期号:23 (08)
标识
DOI:10.1142/s0219519423400808
摘要

The level of human–machine interaction experience is raising its bar as artificial intelligence develops quickly. An important trend in this application is the improvement of the friendliness, harmony, and simplicity of human–machine communication. Electroencephalogram (EEG) signal-driven emotion identification has recently gained popularity in the area of human–computer interaction (HCI) because of its advantages of being simple to extract, difficult to conceal, and real-time differences. The corresponding research is ultimately aimed at imbuing computers with feelings to enable fully harmonic and organic human–computer connections. This study applies three-dimensional convolutional neural networks (3DCNNs) and attention mechanisms to an environment for HCI and offers a dual-attention 3D convolutional neural networks (DA-3DCNNs) model from the standpoint of spatio-temporal convolution. With the purpose of extracting more representative spatio-temporal characteristics, the new model first thoroughly mines the spatio-temporal distribution information of EEG signals using 3DCNN, taking into account the temporal fluctuation of EEG data. Yet, a dual-attention technique based on EEG channels is utilized at the same time to strengthen or weaken the feature information and understand the links between various brain regions and emotional activities, highlighting the variations in the spatiotemporal aspects of various emotions. Finally, three sets of experiments were planned on the Database for Emotion Analysis using Physiological Signals (DEAP) dataset for cross-subject emotion classification experiments, channel selection experiments, and ablation experiments, respectively, to show the validity and viability of the DA-3DCNN model for HCI emotion recognition applications. The outcomes show that the new model may significantly increase the model’s accuracy in recognizing emotions, acquire the spatial relationship of channels, and more thoroughly extract dynamic information from EEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇完成签到 ,获得积分10
26秒前
过时的柚子完成签到,获得积分10
40秒前
45秒前
NexusExplorer应助科研通管家采纳,获得10
46秒前
NexusExplorer应助科研通管家采纳,获得10
46秒前
白华苍松发布了新的文献求助10
50秒前
JamesPei应助andrele采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
充电宝应助小鲤鱼在睡觉采纳,获得10
1分钟前
小鲤鱼在睡觉完成签到,获得积分10
1分钟前
2分钟前
andrele发布了新的文献求助30
2分钟前
CHL完成签到 ,获得积分10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得20
4分钟前
华仔应助于是乎采纳,获得10
5分钟前
iehaoang完成签到 ,获得积分10
6分钟前
h0jian09完成签到,获得积分10
6分钟前
李爱国应助科研通管家采纳,获得10
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
JamesPei应助科研通管家采纳,获得10
6分钟前
andrele发布了新的文献求助10
6分钟前
CCC完成签到,获得积分10
7分钟前
可乐完成签到,获得积分10
7分钟前
从容芮应助CCC采纳,获得10
7分钟前
可乐发布了新的文献求助10
7分钟前
华仔应助可乐采纳,获得10
7分钟前
kuoping完成签到,获得积分10
8分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
情怀应助科研通管家采纳,获得10
8分钟前
Raunio完成签到,获得积分10
9分钟前
9分钟前
9分钟前
汉堡包应助秋刀鱼不过期采纳,获得10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784196
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997