A dual-band hydrogen sensor based on Tamm plasmon polaritons

等离子体子 对偶(语法数字) 极化子 表面等离子体激元 光电子学 材料科学 物理 表面等离子体子 量子力学 哲学 语言学
作者
Kaihua Zhang,Zhiying Chen,Hongju Li,Zao Yi,Yufang Liu,Xiaohu Wu
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (30): 20697-20705 被引量:3
标识
DOI:10.1039/d3cp02653a
摘要

Optical hydrogen sensors possess significant potential in various fields, including aerospace and fuel cell applications, which is due to their compact design and immunity to electromagnetic interference. However, commonly used sensors mostly use single-band sensing, which increases the risk of inaccurate measurements due to environmental interference or operational errors. To address this issue, this study proposes a dual-band hydrogen sensor comprising a Pd metal layer, a dielectric spacer layer, a defect layer, and a photonic crystal. By leveraging the interaction between the defect mode in the excitonic microcavity structure and the Tamm plasmon polaritons (TPPs) and Fabry-Perot (FP) resonances, the structure simultaneously generates two near-zero resonance valleys in the visible wavelength range. By adjusting the thickness of the defect layer, the coupling effect of the defect mode and TPPs together with FP resonance respectively is optimized. When the thickness is 0.27 μm, the sensitivities of the Tamm resonance band and FP resonance band are 239 and 21 RIU-1, respectively. Compared with the common sensors with a single band, its low-sensitivity wavelength can be used as a reference to assist the high-sensitivity wavelength for sensing. In addition, we find that the proposed sensor, through calculation, has good fault tolerance for both the thickness of the defect layer and the incident light angle. This study demonstrates a dual-band hydrogen sensor with TPPs, which is important for exploring new optical hydrogen sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SDS发布了新的文献求助10
刚刚
LLL发布了新的文献求助10
刚刚
爆米花应助娜行采纳,获得10
1秒前
1秒前
虫二队长完成签到,获得积分10
1秒前
1秒前
manan发布了新的文献求助10
1秒前
铸一字错完成签到,获得积分10
1秒前
1秒前
诚c完成签到,获得积分10
1秒前
正在输入中应助niu1采纳,获得10
2秒前
2秒前
王大帅哥完成签到,获得积分10
2秒前
qianhuxinyu完成签到,获得积分10
2秒前
2秒前
烟雾发布了新的文献求助10
2秒前
3秒前
宁听白完成签到,获得积分10
3秒前
yinxx完成签到,获得积分10
3秒前
3秒前
知123完成签到,获得积分10
4秒前
小鳄鱼一只完成签到,获得积分10
4秒前
一叶舟完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
5秒前
吉势甘完成签到,获得积分10
5秒前
Tira发布了新的文献求助10
5秒前
5秒前
酷波er应助研友_nPPERn采纳,获得10
5秒前
顾己发布了新的文献求助20
5秒前
么系么系发布了新的文献求助10
5秒前
啊大大哇关注了科研通微信公众号
6秒前
6秒前
6秒前
Jenny应助追寻夜香采纳,获得10
7秒前
7秒前
xiuxiu_27发布了新的文献求助10
7秒前
万能图书馆应助一一采纳,获得10
7秒前
sweetbearm应助Jiancui采纳,获得10
7秒前
GGG完成签到,获得积分10
8秒前
整齐的泥猴桃完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678